2014 Математика и механика № 5(31)

УДК 512.541

С.Я. Гриншпон, А.К. Мордовской

КОРРЕКТНОСТЬ АБЕЛЕВЫХ ГРУПП БЕЗ КРУЧЕНИЯ И ИХ ОПРЕДЕЛЯЕМОСТЬ СВОИМИ ПОДГРУППАМИ

Описана связь корректности и определяемости своими подгруппами (своими собственными подгруппами) для некоторых классов абелевых групп, получены критерии корректности для делимых групп без кручения и для обобщенно вполне разложимых групп в классе обобщенно вполне разложимых групп.

Ключевые слова: почти изоморфизм, s-изоморфизм, t-изоморфизм, корректность абелевой группы, определяемость группы своими подгруппами (своими собственными подгруппами).

Две абелевы группы называются *почти изоморфными*, если каждая из них изоморфна подгруппе другой группы [1]. Две абелевы группы называются почти изоморфными по подгруппам с некоторым свойством, если каждая из них изоморфна некоторой подгруппе другой группы, обладающей этим свойством. Задача об изоморфизме почти изоморфных групп привлекала внимание многих алгебраистов. В одной из тестовых проблем Капланского [2] ставится вопрос об изоморфизме абелевых групп, почти изоморфных по прямым слагаемым. Для счетных редуцированных примарных групп эта проблема имеет положительное решение [2], однако П. Кроули привел пример неизоморфных p-групп, каждая из которых изоморфна прямому слагаемому другой группы [3]. В ряде работ исследуются, когда из почти изоморфизма абелевых групп по сервантным или вполне характеристическим подгруппам вытекает их изоморфизм (например, [4—8]).

Известная теоретико-множественная теорема Кантора – Шредера – Бернштейна являлась источником постановки аналогичных задач в алгебре не только для абелевых групп. В [9] изучается теоретико-кольцевой, а в [10] – теоретико-категорный аналоги теоремы Кантора – Шредера – Бернштейна. Рассматриваются также почти изоморфные модули (например, [11–13]). Подобные задачи возникают и в других областях математики, в частности в топологии [14, с. 20, 21].

Существует также логический аспект задачи о почти изоморфизме, основанный на том, что если модули почти изоморфны по чистым подмодулям, то они элементарно эквивалентны [15].

Для рассмотренных аналогов теоремы Кантора-Шредера-Бернштейна характерно, в отличие от самой теоремы, наличие примеров отрицательного решения соответствующих задач, а также изучение классов объектов, для которых эти задачи имеют положительное решение.

Абелева группа A называется *корректной*, если для любой абелевой группы B из того, что $A \cong B'$ и $B \cong A'$, где A', B' — подгруппы групп A и B соответственно, следует изоморфизм $A \cong B$ [7].

Для абелевой группы A обозначим соответственно через S(A) и Sub(A) множества ее подгрупп и ее собственных подгрупп.

Определение 1 [16]. Будем говорить, что группы A и B t-изоморфны (обозначение $A \cong B$), если существует биективное отображение множества S(A) на множество S(B), при котором соответствующие подгруппы групп A и B изоморфны.

Определение 2 [16]. Будем говорить, что группы A и B s-изоморфны (обозначение $A \cong B$), если существует биективное отображение множества Sub(A) на множество Sub(B), при котором соответствующие подгруппы групп A и B изо-

морфны. Естественно возникает вопрос: как связаны между собой t-изоморфизм, s-изоморфизм и почти изоморфизм.

Приведем результаты о такой связи, полученные ранее.

Теорема 3 [17]. Если абелевы группы A и B почти изоморфны, то они t-изоморфны.

Так как любые две *t*-изоморфные группы почти изоморфны, получаем

Следствие 4 [17]. Абелевы группы A и B t-изоморфны тогда и только тогда, когда они почти изоморфны.

Связь между t-изоморфизмом и s-изоморфизмом устанавливают следующие результаты.

Теорема 5 [17]. Если абелевы группы A и B t-изоморфны, то они s-изоморфны.

Теорема 6 [17]. Абелевы группы A и B, содержащие собственные подгруппы, изоморфные самим группам, t-изоморфны тогда и только тогда, когда они s-изоморфны.

Естественно возникает вопрос: в каких случаях t-изоморфные (s-изоморфные) группы изоморфны.

Определение 7. Если абелева группа A такова, что для любой абелевой группы B из $A \cong B$ ($A \cong B$) вытекает $A \cong B$, то будем говорить, что группа A определяется своими подгруппами (своими собственными подгруппами).

Вопрос об определяемости группы своими подгруппами (своими собственными подгруппами) представляет самостоятельный интерес, и как оказалось, этот вопрос тесно связан с исследованием корректных абелевых групп.

Из приведенных выше теорем вытекают следующие результаты:

Следствие 8 [17]. Абелева группа A определяется своими подгруппами тогда и только тогда, когда A — корректная группа.

Следствие 9 [17]. Абелева группа определяется своими подгруппами, если она определяется своими собственными подгруппами.

Следствие 10 [17]. Если абелева группа определяется своими собственными подгруппами, то она корректна.

Заметим, что определения почти изоморфизма, t-изоморфизма, s-изоморфизма можно дать аналогичным образом для двух универсальных алгебр A и B одной и той же сигнатуры. Также аналогично могут быть определены понятия корректной универсальной алгебры и алгебры, определяющейся своими подалгебрами (своими собственными подалгебрами). В приведенных выше результатах никак не учитывается специфика абелевых групп, и поэтому эти результаты с соответствующей переформулировкой справедливы для произвольных универсальных алгебр.

Для прямых сумм циклических групп критерии определяемости своими подгруппами и своими собственными подгруппами были получены в [17].

В настоящей работе исследуются корректность абелевых групп из некоторых классов и их определяемость своими подгруппами. Для полноты изложения рассмотрим сначала результаты из [17], относящиеся к группам без кручения (теоремы 11, 13, 14 и следствие 12).

Теорема 11. Пусть A – абелева группа без кручения, не являющаяся делимой. Группа A определяется своими собственными подгруппами тогда и только тогда, когда A – корректная группа.

Доказательство. Необходимость вытекает из следствия 10. Докажем достаточность. Пусть A — корректная абелева группа без кручения, не являющаяся де-

лимой, и B — такая абелева группа, что $A \cong B$. Существует такое натуральное число n, что $nA \ne A$, и, так как A — группа без кручения, то $nA \cong A$. B — также группа без кручения. Действительно, если предположить, что в группе B существует ненулевой элемент b конечного порядка, то — конечная подгруппа группы B, а тогда во множестве подгрупп группы A была бы конечная подгруппа A_1 , такая, что $|A_1| = | = o(b)$, чего быть не может. Если B не является делимой группой, то существует такое натуральное число m, что $mB \ne B$, и, так как B — группа без

кручения, то $mB\cong B$. Применяя теорему 6, получаем, что $A\cong B$, а значит, по следствию 4 группы A и B почти изоморфны. Учитывая корректность группы A, имеем $A\cong B$.

Покажем, что группа B не может быть делимой группой. Пусть B — делимая группа конечного ранга u ее ранг r(B)=n, где $n\in N$, n>1. Запишем группу A в виде $A=D\oplus R$, где D — делимая часть группы A, а R — редуцированная часть этой группы, причем $R\neq 0$. Пусть r(D)=m. Наибольший ранг собственных делимых подгрупп группы B равен n-1. Наибольшая собственная делимая подгруппа группы A совпадает с D u ее ранг равен m. Из s-изоморфизма групп A u B следует, что n-1=m. Так как в группе A есть единственная собственная делимая подгруппа ранга m, а в группе B есть по крайней мере две собственных делимых подгруппы ранга n-1, то это противоречит s-изоморфизму групп A u B. Если же r(B)=1, т.е. $B\cong Q$, то всякая собственная подгруппа группы B имеет ранг B и типы собственных подгрупп группы B пробегают множество всевозможных типов, отличных от типа, представленного характеристикой $(\infty, \infty, ..., \infty, ...)$. Ясно, что тогда из s-изоморфизма групп A u B вытекает r(A)=1 u $A\cong B\cong Q$, чего быть не может, так как редуцированная часть группы A отлична от нуля.

Пусть теперь B — делимая группа без кручения, имеющая бесконечный ранг. $B=\bigoplus_{i\in I}B_i$, где $B_i\cong \mathbf{Q}$ для всякого $i\in I$, $\left|I\right|\geq\aleph_0$. Пусть $i_0\in I$ и $B_1=\bigoplus_{i\in I\setminus\{i_0\}}B_i$. B_1 —

собственная подгруппа группы B, изоморфная самой группе B. Тогда, применяя теорему 6 и следствие 4, получаем $A \cong B$, чего быть не может, так как группа A не является делимой. \blacksquare

Следствие 12. Пусть A — абелева группа без кручения, не являющаяся делимой. Следующие условия эквивалентны:

- 1) A корректная группа;
- 2) А определяется своими собственными подгруппами;
- 3) A определяется своими подгруппами.

Доказательство. Эквивалентность условий 1) и 2) вытекает из теоремы 11. Эквивалентность условий 1) и 3) – из следствия 8. ■

Перейдем теперь к рассмотрению делимых групп без кручения.

Теорема 13. Пусть A — делимая группа без кручения. Следующие условия эквивалентны:

- 1) A корректная группа;
- 2) А определяется своими собственными подгруппами;
- 3) A определяется своими подгруппами;
- 4) A имеет конечный ранг.

Доказательство. Покажем эквивалентность условий 1) и 4).

- а) 1) \Rightarrow 4). Пусть A делимая группа без кручения, имеющая бесконечный ранг. $A=\bigoplus_{i\in I}A_i$, где $A_i\cong \mathbf{Q}$ для всякого $i\in I$, $|I|\geq\aleph_0$. Зафиксируем индекс $i_0\in I$ и выберем в группе A_{i_0} бесконечную циклическую подгруппу C_{i_0} ($C_{i_0}\cong \mathbf{Z}$). Пусть $A_1=C_{i_0}\oplus C$, где $C=\bigoplus_{i\in I\setminus\{i_0\}}A_i$. A_1 подгруппа группы A, и, так как $A\cong C$,
- то группы A и A_1 почти изоморфны, однако A не изоморфна A_1 . Значит, группа A не является корректной.
- б) 4) \Rightarrow 1). Покажем, что делимая группа без кручения A конечного ранга корректна. Пусть B абелева группа и группы A и B почти изоморфны, то есть $A \cong B'$ и $B \cong A'$, где A', B' подгруппы групп A и B соответственно. Так как B' делимая группа, то имеем $B = B' \oplus B''$. Из почти изоморфизма групп A и B вытекает $r(A) = r(B') \le r(B)$ и $r(B) = r(A') \le r(A)$. Значит, r(A) = r(B) = r(B'), отсюда B'' = 0. Итак, B = B', и поэтому $A \cong B$.

Эквивалентность условий 1) и 3) дает следствие 8.

Покажем эквивалентность условий 2) и 4).

- а) 2) \Rightarrow 4). Пусть делимая группа без кручения A определяется своими собственными подгруппами. Тогда по следствию 10 группа A корректна и, значит, в силу уже доказанной эквивалентности условий 1) и 4), группа A имеет конечный ранг.
- б) 4) \Rightarrow 2). Пусть делимая группа без кручения A имеет конечный ранг n, где n>1, B абелева группа и $A\cong B$. Понятно, что группа B также имеет конечный ранг m и m>1. В группе A максимальный ранг собственных подгрупп равен n, а в группе B такой ранг равен m. Из s-изоморфизма групп A и B вытекает n=m. Пусть A_1 делимая подгруппа ранга n-1 группы A. Тогда в группе B есть подгруппа B_1 , изоморфная подгруппа A_1 . Имеем $B=B_1\oplus B_2$, где $r(B_1)=n-1$, $r(B_2)=1$. Если группа B_2 не является делимой, то в группе B есть единственная собственная делимая подгруппа ранга n-1, а именно, подгруппа B_1 , а в группе A есть по крайней мере две собственные делимые подгруппы ранга n-1. Это противоречит s-изоморфизму групп A и B. Значит, B_2 делимая группа, а тогда и B делимая группа, причем r(B)=r(A). Следовательно, $A\cong B$.

Если же r(A)=1, то r(B)=1 и, так как A и B-s-изоморфны, то $A\cong B\cong \mathcal{Q}$. \blacksquare

Теорема 13 и следствие 12 показывают, что для абелевых групп без кручения справедлив такой результат.

Теорема 14. Пусть A — абелева группа без кручения. Следующие условия эквивалентны:

- 1) A корректная группа;
- 2) А определяется своими собственными подгруппами;
- 3) А определяется своими подгруппами.

Перейдем к исследованию корректности обобщенно вполне разложимых групп и их определяемости своими подгруппами.

Абелева группа A называется *обобщенно вполне разложимой*, если она разлагается в прямую сумму групп ранга 1 (не обязательно без кручения).

Понятие вполне разложимости было распространено с групп без кручения на произвольные группы С. Меджиббеном [18].

С.Я. Гриншпон доказал, что если G – обобщенно вполне разложимая группа, то любые два разложения группы G в прямую сумму групп ранга 1 изоморфны и всякое прямое слагаемое группы G – обобщенно вполне разложимая группа. Он также получил полное описание вполне характеристических подгрупп и решетки, ими образуемой, для обобщенно вполне разложимых групп [19].

Выберем в каждом классе изоморфных абелевых групп ранга 1 по одному представителю и пусть $\mathfrak{I}=\{G_{\alpha}\}_{\alpha\in S}$ — множество этих представителей. \mathfrak{I} является максимальным множеством попарно неизоморфных абелевых групп ранга 1. Зададим отношение частичного порядка на множестве S следующим образом: $\alpha_1 \leq \alpha_2$, если группа G_{α_1} изоморфна подгруппе группы G_{α_2} .

Пусть A — обобщенно вполне разложимая группа. Собирая для всякого $\alpha \in S$ в ее разложение в прямую сумму групп ранга 1 прямые слагаемые, изоморфные G_{α} , получим разложение $A = \bigoplus_{\alpha \in S} A(\alpha)$, где $A(\alpha) = \bigoplus_{\Im_{\alpha}} G_{\alpha}$ (некоторые из групп

 $A(\alpha)$ могут быть нулевыми).

Определение 15. Будем говорить, что для группы $A = \bigoplus_{\alpha \in S} A(\alpha)$, где $A(\alpha) = \bigoplus_{\Im_{\alpha}} G_{\alpha}$, выполняется условие S-максимальности, если любая цепь $\alpha_1 < \alpha_2 < \ldots < \alpha_n < \ldots$, где $\alpha_i \in S$, $A(\alpha_i) \neq 0$, обрывается.

Определение 16. Группу A назовем S-ступенчатой, если для любого $\alpha \in S$, такого, что $\mathfrak{I}_{\alpha} \geq \aleph_0$, и для любого $\beta \in S$, такого, что $\beta < \alpha$, выполняется $\mathfrak{I}_{\beta} > \mathfrak{I}_{\alpha}$.

Пусть Ω — некоторый класс абелевых групп. Напомним, что группа A из класса Ω называется корректной в классе Ω , если для любой группы B из класса Ω из того, что группы A и B почти изоморфны, следует изоморфизм $A\cong B$. Если группа A из класса Ω такова, что для любой группы B из класса Ω из t-изоморфизма групп A и B следует $A\cong B$, то будем говорить, что группа A определяется своими подгруппами в классе Ω .

Теорема 17. Обобщенно вполне разложимая группа A корректна в классе обобщенно вполне разложимых групп тогда и только тогда, когда A S-ступенчатая группа и для нее выполняется условие S-максимальности.

Доказательство. Необходимость. Пусть $A = \bigoplus_{\alpha \in S} A(\alpha)$, где $A(\alpha) = \bigoplus_{\Im_{\alpha}} G_{\alpha}$ обобщенно вполне разложимая группа и A — корректная группа в классе обоб-

щенно вполне разложимых групп. Допустим, что A не является S-ступенчатой группой, то есть существуют такие $\beta<\alpha$ из S, что $\mathfrak{T}_{\alpha}\geq\aleph_{0}$ и $\mathfrak{T}_{\beta}\leq\mathfrak{T}_{\alpha}$. Рассмотрим два случая: а) $\mathfrak{T}_{\beta}=0$, б) $\mathfrak{T}_{\beta}\neq0$.

- а) Представим группу $A(\alpha)$ в виде $A(\alpha) = A^*(\alpha) \oplus A^{**}(\alpha)$, где $A^*(\alpha)$ группа, изоморфная G_{α} , $A^{**}(\alpha)$ прямая сумма \mathfrak{I}_{α} групп, изоморфных G_{α} . Рассмотрим подгруппу B группы A: $B = A^*(\beta) \oplus_{\gamma \neq \alpha} A(\gamma) \oplus A^{**}(\alpha)$, где $A^*(\beta)$ подгруппа группы $A^*(\alpha)$, изоморфная G_{β} . Так как $A^{**}(\alpha) \cong A(\alpha)$, то группа A изоморфна подгруппе группы B, а именно $A \cong \bigoplus_{\gamma \neq \alpha} A(\gamma) \oplus A^{**}(\alpha)$. Значит, группа A и B почти изоморфны. Однако группы A и B не изоморфны, так как в группе A нет прямого слагаемого, изоморфного G_{β} , а в группе B есть.
- б) Пусть $A=A(\alpha)\oplus A(\beta) \underset{\gamma\neq\alpha,\beta}{\oplus} A(\gamma)$. Рассмотрим следующую подгруппу B группы $A\colon B=A(\alpha) \underset{\gamma\neq\alpha,\beta}{\oplus} A(\gamma)$. Группы A и B не изоморфны, так как в группе B нет прямых слагаемых, изоморфных G_{β} . Однако группы A и B почти изоморфны. Покажем это. Так как $\mathfrak{I}_{\alpha}\geq \mathfrak{N}_{0}$ и $\mathfrak{I}_{\beta}\leq \mathfrak{I}_{\alpha}$, то $\mathfrak{I}_{\alpha}+\mathfrak{I}_{\beta}=\mathfrak{I}_{\alpha}$ и группу $A(\alpha)$ можно записать в виде $A(\alpha)=A^{*}(\alpha)\oplus A^{**}(\alpha)$, где $A^{*}(\alpha)$ прямая сумма \mathfrak{I}_{β} групп, изоморфных G_{α} , $A^{**}(\alpha)$ прямая сумма \mathfrak{I}_{α} групп, изоморфных G_{α} . Имеем $B=A^{*}(\alpha)\oplus A^{**}(\alpha) \underset{\gamma\neq\alpha,\beta}{\oplus} A(\gamma)$ и $A\cong A^{*}(\beta)\oplus A^{**}(\alpha) \underset{\gamma\neq\alpha,\beta}{\oplus} A(\gamma)$, где $A^{*}(\beta)=\underset{\mathfrak{I}_{\beta}}{\oplus} G_{\beta}$ подгруппа группы $A^{*}(\alpha)=\underset{\mathfrak{I}_{\beta}}{\oplus} G_{\alpha}$. Значит, группы A и B почти изоморфны.

Итак, получили, что всякая обобщенно вполне разложимая корректная группа является *S*-ступенчатой.

Пусть $A=\bigoplus_{\alpha\in S}A(\alpha)$ — корректная в классе обобщенно вполне разложимых групп и S-ступенчатая группа, но для группы A не выполняется условие S-максимальности, то есть существует такое подмножество $S_1=\{\alpha_i\}_{i\in N}$ элементов множества S, что $A(\alpha_i)\neq 0$ и цепь $\alpha_1<\alpha_2<\ldots<\alpha_n<\ldots$ не обрывается. Пусть $S_2=S\setminus S_1$. Тогда $A=A_1\oplus A_2$, где $A_1=\bigoplus_{\alpha\in S_1}A(\alpha)$, $A_2=\bigoplus_{\alpha\in S_2}A(\alpha)$. Предположим, что $\mathfrak{F}_{\alpha_i}\geq \aleph_0$ для всякого $\mathfrak{F}_{\alpha_i}\in S_1$. Так как во всяком множестве кардинальных чисел есть наименьшее, то существует такое $\mathfrak{F}_{\alpha_i}\in S_1$, что $\mathfrak{F}_{\alpha_i}\leq \mathfrak{F}_{\alpha_i}$ для каждого $\mathfrak{F}_{\alpha_i}\in S_1$ такого, что \mathfrak{F}_{α_i} а это противоречит S-ступенчатости группы A.

Пусть α_r наименьшее из таких $\alpha_k \in S_1$, что $0 < \mathfrak{I}_{\alpha_k} < \mathfrak{R}_0$. Так как A-S-ступенчатая группа, то для всякого $\alpha_m \in S_1$, $\alpha_m > \alpha_r$, имеем $\mathfrak{I}_{\alpha_m} < \mathfrak{R}_0$. Тогда $A_1 = A(\alpha_r) \oplus A_1^*$, где $A_1^* = \bigoplus_{\alpha \in S_1 \setminus \{\alpha_r\}} A(\alpha)$. Рассмотрим следующую подгруппу B группы A: $B = A_1^* \oplus A_2$. Так как $\sum_{m > r} \mathfrak{I}_{\alpha_m} = \mathfrak{R}_0$, а при $m \geq r$ все кардинальные числа \mathfrak{I}_{α_m} конечны, то в группе A_1^* есть подгруппа, изоморфная группе A_1 . Итак, полу-

чили, что группы A и B почти изоморфны. Однако группы A и B не изоморфны, так как в группе B нет прямого слагаемого, изоморфного G_{α_r} , а в группе A есть.

$$A_p = \mathop{\oplus}_{\alpha} A(\alpha) = \mathop{\oplus}_{\alpha} \mathop{\Im}_{\alpha} G_{\alpha} \;, \;\; G_{\alpha} \;\; - \;\; \text{коциклические} \;\; p\text{-группы} \;\; \text{и} \;\; A_0 = \mathop{\oplus}_{\alpha} A(\alpha) = \mathop{\oplus}_{\alpha} \mathop{\Im}_{\alpha} G_{\alpha} \;,$$

 G_{α} — группы без кручения. Пусть группа B почти изоморфна группе A.

Среди подгрупп группы A, изоморфных группе B, выберем такую (обозначим ее через B), что $B=\bigoplus_p B_p \oplus B_0$ и $B_0 < A_0$, $B_p < A_p$ для каждого простого числа p.

Среди подгрупп группы B, изоморфных группе A, выберем такую (обозначим ее через C), что $C = \bigoplus_p C_p \oplus C_0$ и $C_0 < B_0$, $C_p < B_p$ для каждого простого числа p.

Тогда из почти изоморфизма групп A и B следует почти изоморфизм A_0 и B_0 , A_p и B_p для каждого простого числа p.

а) A_p и B_p почти изоморфны. Покажем, что $A_p \cong B_p$. Так как для группы A_p и, следовательно, B_p выполняется условие максимальности на множестве S, получа-

$$\operatorname{em}\ A_p = \mathop{\oplus}\limits_{i=1}^n \mathop{\oplus}\limits_{\Im_{\alpha_i}} G_{\alpha_i}\ ,\ B_p = \mathop{\oplus}\limits_{j=1}^m \mathop{\oplus}\limits_{\Im'_{\alpha_j}} G_{\alpha_j}\ .$$

В силу почти изоморфизма групп A_p и B_p , получаем такие системы неравенств:

$$\begin{cases} m \leq n \\ \mathfrak{I}'_m \leq \sum_{i=m}^n \mathfrak{I}_i \\ \mathfrak{I}'_{m-1} + \mathfrak{I}'_m \leq \sum_{i=m-1}^n \mathfrak{I}_i \\ \dots \\ \sum_{i=1}^m \mathfrak{I}'_i \leq \sum_{i=1}^n \mathfrak{I}_i \end{cases} \quad \mathbf{M} \begin{cases} n \leq m \\ \mathfrak{I}_n \leq \sum_{i=n}^m \mathfrak{I}'_i \\ \mathfrak{I}_{n-1} + \mathfrak{I}_n \leq \sum_{i=n-1}^m \mathfrak{I}'_i \\ \dots \\ \sum_{i=1}^n \mathfrak{I}_i \leq \sum_{i=1}^m \mathfrak{I}'_i \end{cases}$$

Так как $m \le n$ и $n \le m$, то m = n. Системы неравенств перепишутся так:

$$\begin{cases} \mathfrak{I}'_n \leq \mathfrak{I}_n \\ \mathfrak{I}'_{n-1} + \mathfrak{I}'_n \leq \mathfrak{I}_{n-1} + \mathfrak{I}_n \\ \dots & \mathbf{u} \end{cases} \begin{cases} \mathfrak{I}_n \leq \mathfrak{I}'_n \\ \mathfrak{I}_{n-1} + \mathfrak{I}_n \leq \mathfrak{I}'_{n-1} + \mathfrak{I}'_n \\ \dots & \dots \\ \sum_{i=1}^n \mathfrak{I}'_i \leq \sum_{i=1}^n \mathfrak{I}_i \end{cases}$$

Проведя «индукцию вниз», покажем, что для всякого i $(i=1,\dots,n)$ $\mathfrak{I}_i=\mathfrak{I}_i'$. Сравнивая первые неравенства в системах, получаем $\mathfrak{I}_n=\mathfrak{I}_n'$. Пусть $\mathfrak{I}_i=\mathfrak{I}_i'$ для всякого i, удовлетворяющего неравенству $k\leq i\leq n$ $(k\in N,\ k>1)$. Из (n+2-k)-х неравенств системы получаем $\sum_{i=k-1}^n\mathfrak{I}_i=\sum_{i=k-1}^n\mathfrak{I}_i'$. Если $\mathfrak{I}_i<\mathfrak{H}_0$ для всякого $i=k,k+1,\dots,n$, то $\mathfrak{I}_{k-1}=\mathfrak{I}_{k-1}'$. Если существует такое s>k-1, что $\mathfrak{I}_s\geq\mathfrak{H}_0$, то, учитывая s-ступенчатость группы s4, получаем s5, s6, s7, s7, s8, s8, s8, s8, s8, s8, s9, то, учитывая s9-ступенчатость группы s8, получаем s8, s8, s8, s8, s9, то, учитывая s9-ступенчатость группы s9, получаем s8, s8, s8, s9, то, учитывая s9-ступенчатость группы s9, получаем s8, s9, s9, s9, то, учитывая s9-ступенчатость группы s9, получаем s9, s9, s9, s9, s9, s9, s9, s9, то, учитывая s9-ступенчатость группы s9, получаем s9, s

Имеем $\mathfrak{I}_{k-1} = \sum_{i=k-1}^n \mathfrak{I}_i = \sum_{i=k-1}^n \mathfrak{I}'_i = \mathfrak{I}'_{k-1} + \sum_{i=k}^n \mathfrak{I}'_i$, и так как $\mathfrak{I}_{k-1} > \sum_{i=k}^n \mathfrak{I}'_i = \sum_{i=k}^n \mathfrak{I}_i$, то $\mathfrak{I}_{k-1} = \mathfrak{I}'_{k-1}$.

Итак, для всякого i ($i=1,\ldots,n$) $\mathfrak{I}_i=\mathfrak{I}'_i$. Следовательно, группы A_p и B_p изоморфны.

б) Пусть A — обобщенно вполне разложимая группа без кручения и $A=\bigoplus\limits_{\alpha\in S}A(\alpha)$, где $A(\alpha)=\bigoplus\limits_{\mathfrak{I}_{\alpha}}G_{\alpha}$. Каждая G_{α} — группа без кручения ранга 1 и A —

вполне разложимая группа без кручения. Множество S можно считать совпадающим с множеством T всех типов групп без кручения ранга 1. Введем следующие обозначения: $A=\bigoplus\limits_{t\in T_A}A_t$, где $A_t=\bigoplus\limits_{\mathfrak{T}_t}G_t$, G_t – группа без кручения ранга 1 типа t,

$$T_A = \{t \in S | r(A_t) \neq 0\}$$
 . Если $F = \bigoplus_{t \in T_F} F_t$ — вполне разложимая группа, то через

F ' обозначается прямая сумма подгрупп F_t , имеющих бесконечный ранг, а через F " — прямая сумма подгрупп F_t , имеющих конечный ранг. Через F(t) будем обозначать подгруппу $\bigoplus_{t' \in T_F, t' \geq t} F_{t'}$, через $F^*(t)$ — подгруппу $\bigoplus_{t' \in T_F, t' > t} F_{t'}$.

Пусть $A_0=\bigoplus_{t\in T_A}A_t$ — вполне разложимая S-ступенчатая группа и для нее выполняется условие S-максимальности. Вполне разложимая группа $B_0=\bigoplus_{t\in T_B}B_t$ почти изоморфна группе A_0 , то есть $A_0\cong B'$ и $B_0\cong A'$, где A' и B' — подгруппы соответственно групп A_0 и B_0 . Пусть $\psi:B_0\to A'$ — указанный изоморфизм. Для упрощения записи введем следующие обозначения: $A=A_0=\bigoplus_{t\in T_A}A_t$,

$$B=A'=\mathop{\oplus}_{t\in T_B}B_t\,,\ C=\psi(B')=\mathop{\oplus}_{t\in T_C}C_t\,.$$

Следуя подходу, примененному в [20] при исследовании почти изоморфных абелевых групп без кручения, покажем, что для любого типа $t \in T_A$ верны следующие утверждения:

- а) если t' > t , $t' \notin T_A$, то $t' \notin T_B$;
- 6) $r(A_t) = r(B_t)$;
- в) если $a \in A_t$, где $r(A_t)$ конечен, то существует такое натуральное число m, что $ma \in B(t)$; если $b \in B_t$, где $r(B_t)$ конечен, то существует такое натуральное число m, что $mb \in C(t)$.
 - I. Пусть t максимальный тип в множестве T_A .
- а) Допустим, существует тип t'>t, такой, что $t'\notin T_A$, $t'\in T_B$. Тогда существует элемент $b\in B$, такой, что $t_B(b)=t'$. Имеем $t_A(b)\geq t'$, но это противоречит тому, что t максимальный тип в множестве T_A . Здесь $t_B(b)$ и $t_A(b)$ типы элемента b в группах B и A соответственно.
- б) Так как t максимальный тип в множестве T_A , имеем $B_t \subseteq A_t$, следовательно, $r(B_t) \le r(A_t)$. Так как в множестве T_B не существует типа t' > t, имеем

- $C_t\subseteq B_t$, следовательно, $r(C_t)\leq r(B_t)$. Таким образом, $r(C_t)\leq r(B_t)\leq r(A_t)$. Но $r(A_t)=r(C_t)$, так как $A\cong C$. Получаем, что $r(A_t)=r(B_t)$.
- в) В силу максимальности типа t имеем $A(t)=A_t$, $B(t)=B_t$, $C(t)=C_t$. Так как $C_t\subseteq B_t\subseteq A_t$ и $r(C_t)=r(B_t)=r(A_t)$ является конечным, то утверждение в) имеет место.
- II. Пусть $t \in T_A$ и допустим, что утверждение а), б), в) верны для любого типа $t^* > t$. Покажем, что эти утверждения верны также и для типа t.
- а) Пусть тип t'>t такой, что $t'\notin T_A$, $t'\in T_B$. Тогда существует ненулевой элемент $b\in B_{t'}$. В группе A элемент b имеет тип, больший или равный t', то есть $b=a_1+\ldots+a_k$, где $a_1\in A_{t_1},\ldots,a_k\in A_{t_k}$, причем $t_1>t',\ldots,$ $t_k>t'$. Группы A_{t_1},\ldots,A_{t_k} имеют конечный ранг, так как в противном случае в силу строения группы A имеем $t'\in T_A$. Тогда, согласно индуктивному предположению, существуют такие натуральные числа m_1,\ldots,m_k , что $m_1a_1\in B(t_1),\ldots,m_ka_k\in B(t_k)$. Следовательно, $mb\in B^*(t')$, где $m=m_1\cdot\ldots\cdot m_k$. Но также имеем, что $mb\in B_{t'}$. Получили противоречие.
- б) Покажем, что $r(A_t)=r(B_t)$. Рассмотрим два случая отдельно: 1) $r(A_{t'})$ конечен для любого типа t'>t; 2) существует тип t'>t, такой, что $r(A_{t'})$ бесконечный кардинал.
- 1) Пусть $r(A_{t'})$ конечен для любого типа t' > t. Тогда, согласно индуктивному предположению, $r(B_{t'})$ также конечен для любого типа t' > t.

Покажем, что $r(C_t) \leq r(B_t)$. Рассмотрим ненулевой элемент $c \in C_t$. Так как $C \subseteq B$, то $c = b_1 + \ldots + b_k$, где $b_1 \in B_{t_1}$, ..., $b_k \in B_{t_k}$. Допустим, что $t_i \neq t$ для всякого $1 \leq i \leq k$, то есть $t_1 > t$, ..., $t_k > t$. Для любого $1 \leq i \leq k$ $r(B_{t_i})$ конечен, тогда, согласно индуктивному предположению, существуют такие натуральные числа m_1, \ldots, m_k что $m_1b_1 \in C(t_1)$, ..., $m_kb_k \in C(t_k)$. Следовательно, $mc \in C^*(t)$, где $m = m_1 \cdot \ldots \cdot m_k$. Но также имеем, что $mc \in C_t$. Получили противоречие. Таким образом, элемент c имеет ненулевую координату в компоненте b_t , то есть $c = c' + c^*$, где $c' \in B_t$, $c^* \in B^*(t)$, $c' \neq 0$.

Пусть c_1, \ldots, c_r — линейно независимая система элементов группы C_t . Тогда элементы c_1, \ldots, c_r имеют ненулевые координаты в компоненте B_t , то есть $c_1 = c'_1 + c_1^*$, ..., $c_r = c'_r + c_r^*$, где $c'_1, \ldots, c'_r \in B_t$, $c_1^*, \ldots, c_r^* \in B^*(t)$, $c'_1 \neq 0$, ..., $c'_r \neq 0$. Допустим, что система элементов c'_1, \ldots, c'_r является линейно зависимой. Тогда существуют такие целые числа m_1, \ldots, m_r не все равные нулю, что $m_1c'_1 + \ldots + m_rc'_r = 0$. Следовательно, $m_1c_1 + \ldots + m_rc_r = m_1c_1^* + \ldots + m_rc_r^*$. Так как $m_1c_1 + \ldots + m_rc_r \neq 0$, то получим противоречие с тем, что любой ненулевой элемент $c \in C_t$ имеет ненулевую координату в компоненте B_t . Таким образом, c'_1, \ldots, c'_r — линейно независимая система элементов группы B_t . Отсюда следует, что $r(C_t) \leq r(B_t)$.

Так как согласно индуктивному предположению для любого типа t'>t $r(A_{t'})=r(B_{t'})=r(C_{t'})$, то аналогично доказанному показывается, что любой ненулевой элемент $b\in B_t$ имеет ненулевую координату в компоненте A_t , то есть $b=b'+b^*$, где $b'\in A_t$, $b^*\in A^*(t)$, $b'\neq 0$, и что для любой линейно независимой системы элементов $b_1=b'_1+b_1^*$, ..., $b_r=b'_r+b_r^*$, система элементов b'_1,\ldots,b'_r также является линейно независимой. Следовательно, $r(B_t)\leq r(A_t)$.

Имеем $A\cong C$, следовательно, $r(A_t)=r(C_t)$. Так как $r(C_t)\leq r(B_t)\leq r(A_t)$, получаем, что $r(A_t)=r(B_t)$.

2) Пусть существует тип t' > t, такой, что $r(A_{t'})$ — бесконечный кардинал. Тогда в силу строения группы $A(r(A_t))$ — бесконечный кардинал и, согласно индуктивному предположению, $r(B_{t'})$ — также бесконечный кардинал.

Покажем, что $r(C_t) \leq r(B_t)$. Рассмотрим ненулевой элемент $c \in C_t$. Так как $C \subseteq B$, то c = c' + c'' , где $c' \in B_t \oplus (B' \cap B^*(t))$, $c'' \in B'' \cap B^*(t)$. Допустим, c' = 0 , тогда $c \in B'' \cap B^*(t)$, то есть $c = b_1 + \ldots + b_k$, где $b_1 \in B_{t_1}$, ..., $b_k \in B_{t_k}$, причем для любого $1 \leq i \leq k$ $t_i > t$ и $r(B_{t_i})$ конечен. Тогда, согласно индуктивному предположению, существуют такие натуральные числа m_1, \ldots, m_k что $m_1b_1 \in C(t_1)$, ..., $m_kb_k \in C(t_k)$. Следовательно, $mc \in C^*(t)$, где $m = m_1 \cdot \ldots \cdot m_k$. Но также имеем, что $mc \in C_t$. Получили противоречие. Таким образом, элемент c имеет ненулевую координату в компоненте $B_t \oplus (B' \cap B^*(t))$, то есть c = c' + c'' , где $c' \in B_t \oplus (B' \cap B^*(t))$, $c'' \in B'' \cap B^*(t)$, $c' \neq 0$.

Пусть c_1, \ldots, c_r – линейно независимая система элементов группы C_t . Тогда элементы c_1, \ldots, c_r имеют ненулевые координаты в компоненте $B_t \oplus (B' \cap B^*(t))$, то есть $c_1 = c'_1 + c''_1$, ..., $c_r = c'_r + c''_r$, где $c'_1, \ldots, c'_r \in B_t \oplus (B' \cap B^*(t))$, $c''_1, \ldots, c''_r \in B'' \cap B^*(t)$, $c'_1 \neq 0$, ..., $c'_r \neq 0$. Допустим, что система элементов c'_1, \ldots, c'_r является линейно зависимой. Тогда существуют такие целые числа m_1, \ldots, m_r не все равные нулю, что $m_1c'_1 + \ldots + m_rc'_r = 0$. Следовательно, $m_1c_1 + \ldots + m_rc_r = m_1c''_1 + \ldots + m_rc''_r$. Так как $m_1c_1 + \ldots + m_rc_r \neq 0$, то получим противоречие с тем, что любой ненулевой элемент $c \in C_t$ имеет ненулевую координату в компоненте $B_t \oplus (B' \cap B^*(t))$. Таким образом, c'_1, \ldots, c'_r – линейно независимая система элементов группы $B_t \oplus (B' \cap B^*(t))$. Отсюда следует, что $r(C_t) \leq r(B_t \oplus (B' \cap B^*(t))) = r(B_t) + r(B' \cap B^*(t))$.

В силу строения группы A имеем $r(A_t) > r(A_{t^*})$ для всякого $t^*>t$. Так как множество типов $t^* \in T_A$ таких, что $r(A_{t^*})$ — бесконечный кардинал, — не более чем счетно, то $r(A_t) > r(A' \cap A^*(t)) = r(B' \cap B^*(t))$ согласно индуктивному предположению. Следовательно, $r(C_t) > r(B' \cap B^*(t))$. Тогда, так как $r(C_t)$ — бесконечный кардинал, получаем $r(C_t) \le r(B_t) + r(B' \cap B^*(t)) = r(B_t)$, то есть $r(C_t) \le r(B_t)$.

Так как $r(C_t) \leq r(B_t)$ и, согласно индуктивному предположению, для любого типа t'>t $r(A_{t'})=r(B_{t'})=r(C_{t'})$, то аналогично доказанному показывается, что $r(B_t) \leq r(A_t)+r(A'\cap A^*(t))$. Но $r(A_t)$ — бесконечный кардинал и $r(A_t)>r(A'\cap A^*(t))$. Следовательно, $r(B_t) \leq r(A_t)+r(A'\cap A^*(t))=r(A_t)$, то есть $r(B_t) \leq r(A_t)$.

Так как $r(C_t) \le r(B_t) \le r(A_t)$ и $r(A_t) = r(C_t)$, получаем, что $r(A_t) = r(B_t)$.

Покажем, что существует такое натуральное число n, что $na^* \in B^*(t)$. Элемент $a^* \in A^*(t)$, следовательно, $a^* = a_1 + \ldots + a_k$, где $a_1 \in A_{t_1}, \ldots, a_k \in A_{t_k}$, причем $t_1 > t$,..., $t_k > t$. Так как $r(A_t)$ конечен, то в силу строения группы A ранги подгрупп A_{t_1}, \ldots, A_{t_k} также конечны. Тогда, согласно индуктивному предположению, существуют такие натуральные числа n_1, \ldots, n_k , что $n_1a_1 \in B(t_1)$, ..., $n_ka_k \in B(t_k)$. Следовательно, $na^* \in B^*(t)$, где $n = n_1 \cdot \ldots \cdot n_k$.

Обозначим через $m^*=nm$. Тогда $m^*a=n(b+a^*)=nb+na^*$. Так как $nb\in B_t$, $na^*\in B^*(t)$, имеем $m^*a\in B(t)$. Первая часть утверждения в) доказана.

Так как $r(A_{t'}) = r(B_{t'}) = r(C_{t'})$ для любого типа $t' \ge t$, то вторая часть утверждения в) доказывается аналогично.

Итак, утверждения а), б), в) верны для любого типа $t\in T_A$. Так как $r(A_t)=r(B_t)$ для любого типа $t\in T_A$ (утверждение б)), то для доказательства изоморфизма вполне разложимых групп A и B осталось показать, что $T_A=T_B$.

Пусть $t\in T_A$, то есть $r(A_t)\neq 0$. Тогда в силу утверждения б) имеем $r(B_t)\neq 0$, то есть $t\in T_B$. Таким образом, $T_A\subseteq T_B$.

Покажем, что $T_B \subseteq T_A$.

Пусть $t' \in T_B$ и тип t' больше некоторого типа из множества T_A . Тогда в силу утверждения а) имеем $t' \in T_A$.

Пусть $t'\in T_B$ и тип t' меньше некоторого типа из множества T_A . Допустим $t'\not\in T_A$. Рассмотрим ненулевой элемент $b\in B_{t'}$. Так как $b\in A$, то $b=a_1+\ldots+a_k$, где $a_1\in A_{t_1},\ldots,a_k\in A_{t_k}$. Имеем $t_1>t',\ldots,t_k>t'$. Так как $t'\not\in T_A$, то в силу строе-

ния группы A $r(A_{t_i})$ конечен для всех $1 \leq i \leq k$. Тогда, согласно утверждению в), существуют такие натуральные числа m_1, \ldots, m_k , что $m_1a_1 \in B(t_1)$, ..., $m_ka_k \in B(t_k)$. Следовательно, $mb \in B^*(t')$, где $m=m_1 \cdot \ldots \cdot m_k$. Но также имеем, что $mb \in B_{t'}$. Получили противоречие.

Пусть $t' \in T_B$ и тип t' не сравним с любым типом из множества T_A . Рассмотрим ненулевой элемент $b \in B_{t'}$. Так как $b \in A$, то b имеет ненулевую координату в некоторой компоненте A_t группы A. Тогда $t' \le t$. Получили противоречие с тем, что тип t' не сравним с любым типом из множества T_A .

Таким образом, $T_B \subseteq T_A$. Получаем, что $T_A = T_B$.

Следовательно, группы A_0 и B_0 изоморфны.

Итак, получили $A_0\cong B_0$ и $A_p\cong B_p$ для каждого простого числа p. Значит, группы A и B изоморфны и, следовательно, A — корректная группа в классе обобщенно вполне разложимых групп. \blacksquare

Используя теорему 17 и следствие 8, получаем такой результат.

Следствие 18. Обобщенно вполне разложимая группа A определяется своими подгруппами в классе обобщенно вполне разложимых групп тогда и только тогда, когда A-S-ступенчатая группа и для нее выполняется условие S-максимальности.

ЛИТЕРАТУРА

- Jonson B. On direct decomposition of torsion free abelian groups // Math. Scand. 1959. No. 2. P. 361–371.
- 2. Kaplansky I. Infinite Abelian Groups. Ann Arbor: Univ. of Michigan Press, 1954.
- 3. *Crawly P.* Solution of Kaplansky's test problem for primary abelian groups // J. Algebra. 1965. No. 4. P. 413–431.
- 4. de Groot J. Equivalent abelian groups // Canad. J. Math. 1957. No. 9. P. 291–297.
- Росошек С.К. Строго чисто корректные абелевы группы без кручения // Абелевы группы и модули. Томск, 1979. С. 143–150.
- Шерстнева А.И. U-последовательности и почти изоморфизм абелевых *p*-групп по вполне характеристическим подгруппам // Изв. вузов. Математика. 2001. № 5. С. 72–80.
- Гриншпон С.Я. f.i.-корректность абелевых групп без кручения // Абелевы группы и модули. Томск, 1989. Вып. 8. С. 65–79.
- Гриншпон С.Я. f.i.-корректные абелевые группы // Успехи матем. наук. 1999. № 6. С. 155–156.
- Cornel I. Some ring theoretic Schroder-Bernstein theorems // Trans. Amer. Math. Soc. 1968.
 V. 132. P. 335–351.
- Trnkova V., Koubek V. The Cantor-Bernstein theorem for fuctors // Comment. Math. Univ. Carol. 1973. V. 14. P. 197–204.
- Bumby R. Modules which isomorphic to submodules each other // Arch. Math. 1965. V. 16. P. 184–185.
- 12. Holzsager R., Hallahan C. Mutual direct summands // Arch. Math. 1974. V. 25. P. 591–592.
- 13. *Росошек С.К.* Чисто корректные модули // Изв. вузов. Математика. 1978. № 10. С. 143–150.
- 14. Борсук К. Теория ретрактов. М.: Мир, 1971.
- 15. Eklof P., Sabbagh G. Model-completions and modules // Ann. Math. Log. 1971. V. 2. P. 251–299.
- 16. *Мордовской А.К.* Изоморфизм подгрупп абелевых групп // Абелевы группы и модули. Томск, 2000. Вып. 15. С. 38–45.

- 17. *Гриншпон С.Я.*, *Мордовской А.К.* Определяемость абелевых групп своими подгруппами и почти изоморфизм // Исследования по математическому анализу и алгебре. Томск, 2001. Вып. 3. С. 72–80.
- 18. *Megibben Ch.* Separable mixed group // Comment. Math. Univ. Carolin. 1980. № 4. P. 755–768.
- 19. *Гриншпон С.Я*. Вполне характеристические подгруппы вполне разложимых абелевых групп // Изв. вузов. Математика. 2004. № 9. С. 18–23.
- Grinshpon S.Ya., Grinshpon I.E., Sherstneva A.I. Almost isomorphic torsion free abelian groups and similarity of homogeneously decomposable groups // Acta Appl. Math. 2005. V. 85. P. 147–156.

Статья поступила 21.05.2014 г.

Grinshpon S.Ya., *Mordovskoi A.K.* CORRECTNESS OF ABELIAN TORSION-FREE GROUPS AND DETERMINABILITY OF ABELIAN GROUPS BY THEIR SUBGROUPS

An Abelian group A is called correct if for any Abelian group B isomorphisms $A \cong B'$ and $B \cong A'$, where A' and B' are subgroups of the groups A and B, respectively, imply the isomorphism $A \cong B$. We say that a group A is determined by its subgroups (its proper subgroups) if for any group B the existence of a bijection between the sets of all subgroups (all proper subgroups) of groups A and B such that corresponding subgroups are isomorphic implies $A \cong B$.

In this paper, connections between the correctness of Abelian groups and their determinability by their subgroups (their proper subgroups) are established. Certain criteria of determinability of divisible torsion-free groups and completely decomposable groups by their subgroups and their proper subgroups, as well as a criterion of correctness of such groups, are obtained.

Keywords: almost isomorphism, *s*-isomorphism, *t*-isomorphism, correctness of abelian groups, determinability of abelian groups by their subgroups (their proper subgroups).

GRINSHPON Samuil Yakovlevich (Doctor of Physics and Mathematics, Prof.,

Tomsk State University, Tomsk, Russian Federation)

E-mail: grinshpon@math.tsu.ru

MORDOVSKOI Andrei Konstantinovich (Candidate of Physics and Mathematics,

Buryat State University, Ulan-Ude, Russian Federation)

E-mail: mak13@mail.ru

REFERENCES

- 1. Jonson B. On direct decomposition of torsion free abelian groups. *Math. Scand.*, 1959, no. 2, pp. 361–371.
- 2. Kaplansky I. Infinite Abelian Groups. Ann Arbor, Univ. of Michigan Press, 1954.
- 3. Crawly P. Solution of Kaplansky's test problem for primary abelian groups. *J. Algebra*, 1965, no. 4, pp. 413–431.
- 4. de Groot J. Equivalent abelian groups. Canad. J. Math., 1957, no. 9, pp. 291–297.
- 5. Rososhek S.K. Strogo chisto korrektnye abelevy gruppy bez krucheniya. *Abelevy gruppy i moduli*. Tomsk, 1979, pp. 143–150. (in Russian)
- 6. Sherstneva A.I. *U*-posledovatel'nosti i pochti izomorfizm abelevykh *p*-grupp po vpolne kharakteristicheskim podgruppam. *Izvestiya vysshikh uchebnykh zavedeniy. Matematika*, 2001, no. 5, pp. 72–80. (in Russian)
- 7. Grinshpon S.Ya. f.i.-korrektnost' abelevykh grupp bez krucheniya. *Abelevy gruppy i moduli*. Tomsk, 1989, vol. 8, pp. 65–79. (in Russian)
- 8. Grinshpon S.Ya. f.i.-korrektnye abelevye gruppy. *Uspekhi matem. nauk*, 1999, no. 6, pp. 155–156. (in Russian)
- 9. Cornel I. Some ring theoretic Schroder-Bernstein theorems. *Trans. Amer. Math. Soc.*, 1968, vol. 132, pp. 335–351.

- 10. Trnkova V., Koubek V. The Cantor-Bernstein theorem for fuctors. *Comment. Math. Univ. Carol.*, 1973, vol. 14, pp. 197–204.
- 11. Bumby R. Modules which isomorphic to submodules each other. *Arch. Math.*, 1965, vol. 16, pp. 184–185.
- 12. Holzsager R., Hallahan C. Mutual direct summands. Arch. Math., 1974, vol. 25, pp. 591-592.
- 13. Rososhek S.K. Chisto korrektnye moduli. *Izvestiya vysshikh uchebnykh zavedeniy. Matematika*, 1978, no. 10, pp. 143–150. (in Russian)
- 14. Borsuk K. Teoriya retraktov. Moskow, Mir Publ., 1971. (in Russian)
- 15. Eklof P., Sabbagh G. Model-completions and modules. *Ann. Math. Log.*, 1971, vol. 2, pp. 251–299.
- 16. Mordovskoy A.K. Izomorfizm podgrupp abelevykh grupp. *Abelevy gruppy i moduli*. Tomsk, 2000, vol. 15, pp. 38–45. (in Russian)
- 17. Grinshpon S.Ya., Mordovskoy A.K. Opredelyaemost' abelevykh grupp svoimi podgruppami i pochti izomorfizm. *Issledovaniya po matematicheskomu analizu i algebre*. Tomsk, 2001, vol. 3, pp. 72–80. (in Russian)
- 18. Megibben Ch. Separable mixed group. *Comment. Math. Univ. Carolin.*, 1980, no. 4, pp. 755–768.
- 19. Grinshpon S.Ya. Vpolne kharakteristicheskie podgruppy vpolne razlozhimykh abelevykh grupp. *Izvestiya vysshikh uchebnykh zavedeniy. Matematika*, 2004, no. 9, pp. 18–23. (in Russian)
- 20. Grinshpon S.Ya., Grinshpon I.E., Sherstneva A.I. Almost isomorphic torsion free abelian groups and similarity of homogeneously decomposable groups. *Acta Appl. Math.*, 2005, vol. 85, pp. 147–156.