Теорема 1.

- 1) Для любой бент-функции от 4 переменных существуют базисы $\left(\varepsilon_0^{(1)}, \varepsilon_1^{(1)}, \varepsilon_2^{(1)}, \varepsilon_3^{(1)}\right)$ и $\left(\varepsilon_0^{(2)}, \varepsilon_1^{(2)}, \varepsilon_2^{(2)}, \varepsilon_3^{(2)}\right)$ векторного пространства $\left(\mathbb{F}_{2^4}\right)_{\mathbb{F}_2}$, такие, что приведенное представление данной функции в первом базисе является, а во втором не является гипербент-функцией.
- 2) Для любого четного n > 4 существуют функции от n переменных, для каждой из которых можно найти два базиса векторного пространства $(\mathbb{F}_{2^n})_{\mathbb{F}_2}$, таких, что приведенное представление функции в первом базисе является, а во втором не является гипербент-функцией.

ЛИТЕРАТУРА

- 1. *Кузъмин А. С., Марков В. Т., Нечаев А. А., Шишков А. Б.* Приближение булевых функций мономиальными // Дискретная математика. 2006. Т. 18. N 1. С. 9–29.
- 2. *Логачев О. А., Сальников А. А., Ященко В. В.* Булевы функции в теории кодирования и криптологии. М.: МНЦМО, 2004. 470 с.
- 3. Youssef A. M., Gong G. Hyper-bent functions // Proceedings of Advances in Cryptology, EUROCRYPT'2001. Lect. Notes in Comp. Sci. New York: Springer Verlag, 2001. V. 2045. P. 406–419.

УДК 519.7

СВОЙСТВА БЕНТ-ФУНКЦИЙ, НАХОДЯЩИХСЯ НА МИНИМАЛЬНОМ РАССТОЯНИИ ДРУГ ОТ ДРУГА

Н. А. Коломеец, А. В. Павлов, А. А. Левин

Здесь и далее пусть n — четное натуральное число. Обозначим:

- E^{n} множество двоичных векторов длинны n;
- \mathcal{F}_n множество всех булевых функций от n переменных;
- нелинейность расстояние Хэмминга до класса аффинных функций;
- бент-функции булевы функции от четного числа переменных, обладающие максимальной нелинейностью;
- \mathfrak{B}_n множество всех бент-функций от n переменных;
- $D(f,g)=\{x\in E^n\mid f(x)\neq g(x)\},$ где $f,g\in \hat{\mathcal{F}}_n;$
- f аффинна на D, если для некоторых $w_0 \in E^n, c \in E$ и для любого $x \in D$ выполняется $f(x) = w_0 \cdot x \oplus c$, где $f \in \mathcal{F}_n, D \subseteq E^n$;
- d(A) минимальное расстояние между двумя функциями в классе $A \subseteq \mathcal{F}_n$;
- U многообразие в E^n , т. е. $U=x_0\oplus L$, где L подпространство в $E^n,x_0\in E^n$.

Имеет место нижняя оценка на расстояние между бент-функциями.

Теорема 1. Справедливо $d(\mathfrak{B}_n) \geqslant 2^{n/2}$.

Следующая теорема дает критерий расположения функций на расстоянии $2^{n/2}$.

Теорема 2. Пусть $f,g \in \mathcal{F}_n, \ f$ — бент-функция, $|D(f,g)| = 2^{n/2}$. Тогда g — бент-функция тогда и только тогда, когда множество D(f,g) — линейное многообразие размерности n/2 и f на нем аффинна.

Следствие 1. Минимальное расстояние в классе бент-функций равно $2^{n/2}$.

Определим следующие множества.

- $L_{all}(f)$ множество всевозможных подпространств в E^n размерности n/2, на которых f аффинна;
- $U_{all}(f)$ множество всевозможных многообразий в E^n размерности n/2, на которых f аффинна.

По предыдущей теореме все бент-функции на минимальном расстоянии от заданной бент-функции описываются следующим образом.

Следствие 2. Пусть $f \in \mathfrak{B}_n$. Тогда функция $g \in \mathfrak{B}_n$ находится на минимальном расстоянии от f тогда и только тогда, когда g представляется в следующем виде:

$$g(x) = f(x) \oplus I_U(x)$$
, для некоторого $U \in U_{all}(f)$,

где $I_U(x)$ — индикатор множества U.

В связи с предложенным описанием бент-функций на минимальном расстоянии от заданной бент-функции рассмотрим индикаторы линейных многообразий:

Лемма 1. Пусть U — многообразие в E^n размерности n/2. Тогда индикатор U можно представить в следующем виде:

$$I_U(x) = (a_1 \cdot x \oplus c_1) \cdot \ldots \cdot (a_{n/2} \cdot x \oplus c_{n/2})$$

для некоторых $a_i \in E^n$ и $c_i \in \{0, 1\}$.

Утверждение 1. Любая функция из \mathfrak{B}_6 имеет непустое L_{all} .

Утверждение 2. Любая функция из \mathfrak{B}_8 степени не больше 3 имеет непустое L_{all} .

Для доказательства этих утверждений использовались аффинно неэквивалентные бент-функции, приведенные в [2].

Утверждение 3. Любая функция из \mathfrak{B}_n , аффинно эквивалентная функции в виде линейного разветвления с индексом линейности n/2, имеет непустое L_{all} . В частности, любая функция из класса Мэйорана — Мак-Фарланда имеет непустое L_{all} .

Описание класса \mathfrak{B}_n в виде линейного разветвления можно найти в [1], класс Мэйорана — Мак-Фарланда в [3].

Утверждение 4. Существуют бент-функции от 8 переменных, имеющие непустое L_{all} , которые не являются аффинно эквивалентными функциям в виде линейного разветвления с индексом линейности 4.

ЛИТЕРАТУРА

- 1. *Логачев О. А., Сальников А. А., Ященко В. В.* Булевы функции в теории кодирования и криптологии. М.: МЦНМО, 2004. 470 с.
- 2. Токарева Н. Н. Бент-функции: результаты и приложения. Обзор работ // Прикладная дискретная математика. 2009. Т. З. № 1. С. 15–37.
- 3. $McFarland\ R.\ L.$ A family of difference sets in non-cyclic groups // J. Combin. Theory. Ser. A. 1973. V. 15. No. 1. P. 1–10.