Рассчитаны мощности слоев J_N^k для $N\leqslant 20$. В приводимой ниже таблице указано количество классов сопряженных элементов, содержащихся в слое J_N^k для k=2,3,4,5.

N	2	3	4	5
2	1			
4	2			
6	3	4	6	5
8	5	8	12	
10	7	16	22	20
12	11	36	40	
14	15	62	69	66
16	22	113	118	·
18	30	186	195	190
20	42	313	317	

ЛИТЕРАТУРА

- 1. Brenner J. L. Covering theorems for FINANSIGS VIII Almost all conjugacy classes in A_n have exponent ≤ 4 // J. Austral. Math. Soc. 1978. V. 25. P. 210–214.
- 2. Products of conjugacy classes in groups / eds. Z. Arad, M. Herzog // Lecture Notes in Math. Berlin: Springer Verlag, 1985. V. 1112. P. 198–221.
- 3. Глухов М. М., Елизаров В. П., Нечаев А. А. Алгебра. Т. И. М.: Гелиос АРВ, 2003.
- 4. $\mathit{Туэксилин}\ M.\ Э.\ О$ порождении знакопеременной группы полурегулярными инволюциями // Обозрение прикладной и промышленной математики. 2004. Т. 11. Вып. 4. С. 938–939.

УДК 519.1

СВОЙСТВА ВНЕШНИХ УПРАВЛЯЮЩИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В. М. Фомичев

Свойства выходной гаммы и преобразований состояний генератора с внешним управлением неравномерным движением существенным образом определяются свойствами управляющей гаммы. Например, в генераторах « δ - τ -шагов» и в генераторах с перемежающимся шагом, построенных на основе линейных регистров сдвига (ЛРС) с максимальными длинами периодов, порядок линейной подгруппы циклической группы преобразований состояний генератора определяется длиной периода t управляющей гаммы [1, разд. 18.4.2, 2]: линейные уравнения гаммообразования соответствуют всем тактам работы генератора, номера которых кратны t.

Показано, что в генераторах с внешним управлением доля линейных уравнений гаммообразования тем больше, чем меньше h-период управляющей последовательности, где h — функция, отображающая отрезки управляющей последовательности в подходящее множество. Свойства h-периодов последовательностей над \mathbb{N}_0 для конкретной функции h суммирования членов последовательности, полученные в [3], в работе обобщены.

Для аддитивных функций h доказано, что длина h-периода периодической последовательности делит длину периода, для некоторых h исследованы длины h-периодов последовательностей де Брёйна и линейных рекуррентных последовательностей над конечными полями.

Для широкого класса генераторов гаммы с внешним управлением неравномерным движением показано, что доля линейных уравнений относительно знаков промежуточного состояния среди уравнений гаммообразования, соответствующих знакам периода гаммы, равна $1/\tau$, где τ — длина h-периода управляющей гаммы и h — аддитивная функция маркировки слов.

Пусть \mathbb{N} — множество натуральных чисел; $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$; $X_{\to} = \{x_0, x_1, \ldots\}$ — последовательность над множеством X; $X^* = \bigcup_{s\geqslant 1} X^s$ — множество всех слов натуральной длины в алфавите X; (t,τ) — наибольший общий делитель чисел $t,\tau\in\mathbb{N}$.

Множество X^* образует полугруппу относительно операции конкатенации. Результат конкатенации слова u длины ℓ и слова u' длины ℓ' есть слово uu' длины $\ell+\ell'$. Слово $x_{\nu}, x_{\nu+1}, \ldots, x_{\nu+s-1}$ длины s в алфавите X (обозначим его $x_{(\nu,s)}$) называют s-граммой последовательности X_{\to} , где $t \in \mathbb{N}$, $\nu \in \mathbb{N}_0$.

Обозначим $t = t(X_{\rightarrow})$ и $\nu = \nu(X_{\rightarrow})$ —длины периода и предпериода последовательности X_{\rightarrow} . Период последовательности X_{\rightarrow} есть слово $x_{\nu+i}, x_{\nu+i+1}, \dots, x_{\nu+i+t-1}$ при любом $i \geq 0$, а предпериод—слово $x_0, x_1, \dots, x_{\nu-1}$ при $\nu \geq 0$. Если $\nu(X_{\rightarrow}) = 0$, то X_{\rightarrow} предпериода не имеет и называется чисто периодической последовательностью.

Рассмотрим функцию $h: X^* \to Y$, где Y — некоторое множество. Функцию h можно рассматривать как обобщение хеш-функции. Через h^s обозначим ограничение функции h на множество X^s , то есть $h^s: X^s \to Y$, $s \geqslant 1$.

При натуральном s и при $\mu \in \mathbb{N}_0$ последовательности X_{\to} поставим в соответствие последовательность $X_{\to}^{\mu,s}$ её s-грамм: $X_{\to}^{\mu,s} = \{(x_{(\mu+ks,s)}), k=0,1,\ldots\}$, которой также соответствует последовательность $h(X_{\to}^{\mu,s})$ над Y: $h(X_{\to}^{\mu,s}) = \{h^s(x_{(\mu+ks,s)}), k=0,1,\ldots\}$.

Последовательность X_{\to} назовем h-периодической, если при некоторых $s\in\mathbb{N}$ и $\mu\in\mathbb{N}_0$

$$h(x_{(\mu+ks,s)}) = h(x_{(\mu+(k+1)s,s)}), \quad k = 0, 1, \dots;$$
 (1)

равенство (1) будем интерпретировать так: в X_{\to} имеются h^s -совпадения с начальным номером μ . Наименьшее из таких s назовем длиной h-периода последовательности X_{\to} (обозначается $t_h(X_{\to})$, кратко t_h), и если t_h —длина h-периода, то наименьший из начальных номеров совпадения μ назовем длиной h-предпериода последовательности X_{\to} (обозначается $\nu_h(X_{\to})$, кратко ν_h). Если (1) выполняется при $\mu=0$, то последовательность X_{\to} назовем чисто h-периодической. Для последовательности X_{\to} назовем h-периодом слово $x_{(\mu+ks,s)}$ и h-предпериодом—слово $x_0, x_1, \ldots, x_{\mu-1}$, где $s=t_h$ и $\mu=\nu_h, k=0,1,\ldots$

Заметим, если в периодической последовательности имеются h^s -совпадения с начальным номером μ , то не обязательно t_h делит s и ν_h равно μ . Это подтверждается примером чисто периодической последовательности X_{\to} над \mathbb{N}_0 при $h^s(x_i, x_{i+1}, \dots, x_{i+s-1}) = x_i + x_{i+1} + \dots + x_{i+s-1}$, где s > 0, $i \in \mathbb{N}_0$, $a \in \mathbb{N}$:

$$X_{\rightarrow} = \{a, 2a, 0, 0, 2a, a, a, 2a, 0, 0, 2a, a, a, 2a, 0 \dots\}.$$
 (2)

Длина периода последовательности X_{\to} равна 6, в X_{\to} имеются h^3 -совпадения с начальным номером 0 и h^2 -совпадения с начальным номером 1, но нет h^1 -совпадений. Следовательно, $t_h(X_{\to}) = 2$, $\nu_h(X_{\to}) = 1$.

Отметим элементарные свойства h-периодических последовательностей.

1) Периодическая последовательность X_{\to} с длиной предпериода ν и длиной периода t является h-периодической для любой функции $h: X^* \to Y$, при этом $t_h \leqslant t, \nu_h \leqslant \nu$ (в X_{\to} имеются h^t -совпадения с начальным номером ν).

- 2) Подпоследовательность $\{x_i, x_{i+1}, \ldots\}$ h-периодической последовательности X_{\to} с длиной h-периода t_h и длиной h-предпериода ν_h является чисто h-периодической, если и только если $(i \nu_h)$ кратно t_h .
- 3) Не всякая h-периодическая последовательность является периодической, что показывается примером последовательности хаотически чередующихся s-грамм u и w в алфавите X, где $h^s(u) = h^s(w)$:

$$X_{\to} = \{u, w, w, u, u, w, u, w, w, u, u, w, u, w, w, w, u \dots\}.$$

В чисто h-периодической последовательности X_{\to} имеются h^s -совпадения, значит, X_{\to} имеет длину h-периода не более s, но не является периодической, так как построена как апериодическая последовательность s-грамм u и w.

Пусть Y — аддитивная полугруппа. Функцию $h: X^* \to Y$ назовем аддитивной, если для любого слова w длины s>1 из того, что w=uu', где $u\in X^\ell, \ u'\in X^r, \ \ell+r=s$, следует, что

$$h^s(w) = h^{\ell}(u) + h^r(u').$$

Пример 1 (аддитивные функции).

- 1) Длина слова u, то есть функция $L: X^* \to \mathbb{N}$, определенная для $u = x_1 x_2 \dots x_\ell \in X^\ell$ формулой $L(u) = \ell$.
- 2) Частота символа a в слове u, где $a \in X$; обозначим эту функцию $m_a(u)$.
- 3) Пусть $X = \{a_1, a_2, \dots, a_k\}, m_i(u)$ частота символа a_i в слове $u, i = 1, \dots, k$. Функцией маркировки слов назовем функцию $m: X^* \to \mathbb{N}_0^k$, определенную формулой $m(u) = (m_1(u), \dots, m_k(u))$.
- 4) Пусть $X = \mathbb{N}_0$ или $X = \mathrm{GF}(k)$, где k простое, и $u = x_1 x_2 \dots x_\ell \in X^\ell$. Функцией веса слов из X^* назовем функцию wt : $X^* \to \mathbb{N}_0$, определенную формулой wt $(u) = \mathrm{wt}(x_1) + \dots + \mathrm{wt}(x_\ell)$, где wt $(x_i) = x_i$ для любого $x_i \in X$.

Теорема 1. Пусть $X_{\to} = \{x_0, x_1, \ldots\}$ — чисто периодическая последовательность с длиной периода t и длиной h-периода t_h , где h— аддитивная функция. Тогда t_h лелит t.

Следствие 1. Пусть t — простое, тогда $t_h = 1$, если $h(x_0) = \ldots = h(x_{t-1})$, и $t_h = t$ в остальных случаях.

Обозначим через ЛРП
max-n линейную рекуррентную последовательность порядка n над произвольным полем P порядка k с максимальной длиной периода, то есть $t=k^n-1$.

Теорема 2. Для ЛРП мах-n в каждом из следующих случаев $t_h = k^n - 1$:

- а) $h = m_a(u)$, где a отлично от нуля поля P;
- 6) h = m(u);
- в) $h = \operatorname{wt}(u)$, где $P = \operatorname{GF}(2)$ или $P = \operatorname{GF}(3)$.

Если
$$P = GF(k)$$
, где $k > 3$ — простое, то $t_{\text{wt}} = (k^n - 1)/d$, где d делит $(k - 1)/2$.

Чисто периодическую рекуррентную последовательность порядка n над множеством X, где |X|=k, называют нормальной рекуррентной последовательностью, если длина ее периода равна k^n , и обозначают $HP\Pi(k,n)$. Генерируются $HP\Pi(k,n)$ полноцикловыми регистрами сдвига длины n над множеством X. $HP\Pi(2,n)$ называют последовательностями де Брёйна. Обзор свойств $HP\Pi(k,n)$ дан в [4].

Теорема 3. В любой НРП(2,n) имеются h-совпадения на расстоянии 2^{n-1} при n > 0 и при всех функциях h из $\{m_0(u), m_1(u), m(u), \operatorname{wt}(u)\}$.

Следствие 2. Длина h-периода последовательности де Брёйна порядка n равна 2^r , где r < n, при всех функциях $h \in \{m_0(u), m_1(u), m(u), \operatorname{wt}(u)\}$.

При анализе линейности уравнений гаммообразования, связанных с генераторами гаммы с внешним управлением неравномерным движением, важным свойством является h-периодичность управляющей гаммы.

Рассмотрим класс генераторов, включающий генераторы « δ - τ -шагов» и генераторы с перемежающимся шагом. Пусть X_{\to} — последовательность над простым полем $X = \mathrm{GF}(k)$, управляющая движением информации в линейных регистрах сдвига ЛРС-0, ..., ЛРС-(k-1) над полем P, которые реализуют линейные подстановки g_0,\ldots,g_{k-1} векторных пространств определенных размерностей. В i-м такте подстановка g(i) пространства P^n состояний набора ЛРС-0, ..., ЛРС-(k-1) определяется знаком x_i управляющей гаммы, схемой движения регистров, задаваемой матрицей $\Delta = (\delta(i,j))$ над \mathbb{N}_0 размера $k \times k$ (строки матрицы различны), и набором подстановок $g = (g_0,\ldots,g_{k-1})$. Пусть в i-м такте состояние всех ЛРС генератора есть $y(i) = (y_0(i),\ldots,y_{k-1}(i))$, где $y_i(i)$ — состояние ЛРС-j, $j = 0,\ldots,k-1$, $i \geqslant 0$. Тогда

$$y_j(i+1) = g_j^{\delta(x_i,j)}(y_j(i)).$$

Знак γ_i выходной гаммы генератора есть сумма битов, записанных в i-м такте в крайних ячейках всех ЛРС (как в генераторе с перемежающимся шагом).

Пусть $m_j(i,\tau)$ — частота символа j в слове $x_{(i,\tau)}$ и $G(i,\tau)=g(i)\cdot g(i+1)\cdot\ldots\cdot g(i+\tau-1)$. Тогда

$$G(i,\tau) = (g_0^{z_0(i,\tau)}, \dots, g_{k-1}^{z_{k-1}(i,\tau)}),$$

где $z_j(i,\tau)=m_0(i,\tau)\cdot\delta(0,j)+\ldots+m_{k-1}(i,\tau)\cdot\delta(k-1,j)$ — суммарная продвижка ЛРС-j при управляющем слове $x_{(i,\tau)},j=0,\ldots,k-1$. Заметим, что $G(i,\tau)$ и $G(\ell,\tau)$ суть одинаковые линейные подстановки пространства P^n , если одинаковы наборы величин $(z_0(i,\tau),\ldots,z_{k-1}(i,\tau))$ и $(z_0(\ell,\tau),\ldots,z_{k-1}(\ell,\tau))$. Отсюда если m функция маркировки слов и $x_{(i,\tau)}$ есть m-период управляющей гаммы, то наборы величин $(z_0(i+r\tau,\tau),\ldots,z_{k-1}(i+r\tau,\tau))$ одинаковы при любом $r=0,1,\ldots$ Следовательно, если длина m-периода неизвестной чисто m-периодической управляющей последовательности равна τ , то линейные подстановки $G(i+r\tau,\tau)$ однозначно определены при некотором $i\in\{0,\ldots,\tau-1\}$ и при $r=0,1,\ldots$, поэтому знаки $\gamma_{i+r\tau}$ гаммы линейно выражаются через знаки состояния y(i) генератора.

Выводы

- 1) Для криптографических приложений важным свойством является h-периодичность последовательностей при различных функциях h.
- 2) Наилучшие криптографические свойства ряда генераторов с неравномерным движением, связанные с нелинейностью уравнений гаммообразования, достигаются в схемах с управляющей гаммой, имеющей большие длины периода и *m*-периода, где *m* функция маркировки слов.

ЛИТЕРАТУРА

1. Фомичев В. М. Методы дискретной математики в криптологии. М.: ДИАЛОГ-МИФИ, 2010. 424 с.

- 2. Фомичев В. М., Фомичев Н. В. Исследование линейных подсистем нелинейных систем уравнений гаммообразования // Системы высокой доступности. М.: Радиотехника, 2009. № 4. Т. 5. С. 28–33.
- 3. *Горьков И. Д.* Свойства σ -периодических последовательностей // Системы высокой доступности. М.: Радиотехника, 2009. № 4. Т. 5. С. 34–37.
- 4. *Агибалов Г. П.* Нормальные рекуррентные последовательности // Вестник Томского госуниверситета. 2007. Приложение. № 23. С. 4–11.