4. *Касъянов В. Н., Евстигнеев В. А.* Графы в программировании, визуализация и применение. СПб.: Петербург, 2003.

УДК 519.713

ПЕРЕСТРАИВАЕМЫЕ АВТОМАТЫ С ОБЩЕЙ ПАМЯТЬЮ¹

В. Н. Тренькаев

Одним из требований к современным цифровым устройствам является гибкость, т. е. возможность внесения изменений в алгоритм функционирования, реализуемая с помощью соответствующей настройки устройства [1, 2]. В работе рассматривается функциональная настройка, когда не изменяются связи между элементами перестра-иваемого устройства, но изменяется их функциональность. Предполагается, что часть устройства реализована на «жесткой» логике, а часть — на многофункциональных настраиваемых элементах. Например, к данному классу перестраиваемых устройств можно отнести автоматные шифраторы с ключевой информацией в виде подмножества переходов. Поведение таких устройств предлагается моделировать с помощью совместной работы двух базовых автоматов, один из которых имеет жестко фиксированное поведение, а поведение другого может изменяться (задаваться пользователем). Предложена логическая структура перестраиваемого устройства (рис.1), поведение которого является объединением поведения составляющих его базовых автоматов.

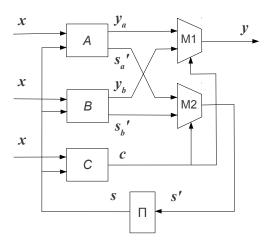


Рис. 1. Структура перестраиваемого устройства

Далее в работе «гибкие» цифровые устройства описываются моделью перестраиваемого автомата. Перестраиваемым автоматом Q называется шестерка (S,X,Y,K,ψ,φ) , где S,X,Y,K—конечные множества, называемые соответственно множеством состояний, входным алфавитом, выходным алфавитом, множеством настроек, а $\psi:S\times X\times K\to S$ и $\varphi:S\times X\times K\to Y$ —функции переходов и выходов соответственно. Таким образом, перестраиваемый автомат Q задает множество автоматов Мили $\{A_k=(S,X,Y,\psi_k,\varphi_k):k\in K\}$, где $\psi_k(s,x)=\psi(s,x,k),\varphi_k(s,x)=\varphi(s,x,k)$ для всех $s\in S, x\in X$ и $k\in K$.

 $^{^{1}}$ Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (гос. контракт № $\Pi 1010$).

Рассмотрим предлагаемую логическую схему перестраиваемого устройства (рис.1). Блоки A, B, C имеют входы $x \in X, s \in S$. Выходы блока A суть $y_a \in Y$ и $s'_a \in S$ — значения его функций $\mu: S \times X \to Y$ и $\eta: S \times X \to S$ соответственно. Выходы блока B суть $y_b \in Y$ и $s'_b \in S$ — значения его функций $\lambda: S \times X \times K \to Y$ и $\delta: S \times X \times K \to S$ соответственно при фиксированном $k \in K$, т. е. блок B отвечает за настройку устройства. Блок C реализует функцию $\pi: S \times X \times K \to \{a,b\}$ при фиксированном $k \in K$, т. е. блок C также отвечает за настройку устройства. Таким образом, чтобы настроить устройство, требуется зафиксировать $k \in K$. Выход блока C есть управляющий символ C для мультиплексоров C и C0 и C1 и C2 которые в зависимости от C3 «пропускают дальше» соответствующие выходы либо блока C4, либо блока C5 встрочно: если C5 а, то выход C6 и C7 и C8. Память перестраиваемого устройства реализуется в виде блока C8, котором хранится состояние C8, причем C9 в следующий такт времени работы устройства.

Поведение перестраиваемого устройства формируется в результате совместной работы двух базовых автоматов $A_1 = (S, X, Y, \eta, \mu)$ и $A_2 = (S, X, Y, \delta_k, \lambda_k)$ и может быть описано с помощью перестраиваемого автомата. Такой автомат будем называть перестраиваемым автоматом с общей памятью, поскольку состояние, в которое перейдет автомат, формируется как блоком A, так и блоком B, но в память «закладывается» только одно из двух возможных значений, т. е. память является как бы общей для автоматов A_1 и A_2 . Справедливо следующее утверждение.

Утверждение. Пусть заданы два базовых автомата $A_1 = (S, X, Y, \eta, \mu)$ и $A_2 = (S, X, Y, \delta_k, \lambda_k)$, а также функция $\pi : S \times X \times K \to \{a, b\}$. Тогда перестраиваемый автомат с общей памятью $Q = (S, X, Y, K, \psi, \varphi)$ при фиксированной настройке $k \in K$ есть автомат Мили $A_k = (S, X, Y, \psi_k, \varphi_k)$, такой, что для любой пары (s, x) из $S \times X$ верно: если $\pi_k(s, x) = a$, то $\psi_k(s, x) = \eta(s, x)$ и $\varphi_k(s, x) = \mu(s, x)$, иначе $\psi_k(s, x) = \delta_k(s, x)$ и $\varphi_k(s, x) = \lambda_k(s, x)$.

ЛИТЕРАТУРА

- 1. Sklyarov V. Reconfigurable models of finite state machines and their implementation in FPGAs // J. Systems Architecture. 2002. No. 47. P. 1047–1064.
- 2. Шидловский С. В. Автоматическое управление. Перестраиваемые структуры. Томск: Томский государственный университет, 2006. 288 с.