УДК 519.7

КЛАССИФИКАЦИЯ ГРАФОВ АНФ КВАДРАТИЧНЫХ БЕНТ-ФУНКЦИЙ ОТ ШЕСТИ ПЕРЕМЕННЫХ

Е. П. Корсакова

В математике часто возникает задача построения булевых функций, обладающих свойством нелинейности. Особенный интерес представляют функции, для которых эти свойства экстремальны. Такие булевы функции от четного числа переменных называются бент-функциями. Определим понятие бент-функции более строго. Преобразованием Уолша — Адамара булевой функции f от n переменных называется целочисленная функция W_f , заданная на множестве \mathbb{Z}_2^n равенством $W_f(v) = \sum_{u \in \mathbb{Z}_2^n} (-1)^{< u, v > \oplus f(u)}$.

Бент-функцией называется булева функция от n переменных (n четно), такая, что модуль каждого коэффициента Уолша — Адамара этой функции равен $2^{n/2}$.

Несмотря на то, что масштабы исследования бент-функций велики, в настоящее время они изучены довольно плохо. Например, задача описания всех бент-функций от n переменных решена лишь при малых значениях n. При $n \geqslant 10$ класс бент-функций не описан, его мощность неизвестна.

Обратимся к вопросу классификации бент-функций степени 2 от 6 переменных. Известно [1], что все квадратичные бент-функции аффинно эквивалентны между собой. Введем для таких функций понятие более сильной эквивалентности, а именно графовой эквивалентности. Каждой функции сопоставим граф на шести вершинах. Вершины графа отождествим с переменными булевой функции, ребрами соединим те вершины, которые образуют слагаемое в квадратичной части алгебраической нормальной формы (АНФ) функции. Для каждого графа определим его тип — упорядоченный по убыванию набор степеней его вершин. Две функции назовем графово эквивалентными, если соответствующие им графы изоморфны. В данной работе решена задача графовой классификации всех квадратичных бент-функций от 6 переменных.

Все квадратичные бент-функции аффинно эквивалентны функции $x_1x_2 \oplus x_3x_4 \oplus x_5x_6$. Поэтому для нахождения графов использовались аффинные преобразования этой функции, заданные верхнетреугольными матрицами с 1 на диагонали, 0 или 1 над диагональю, а именно вида

$$\begin{pmatrix}
1 & * & * & * & * & * \\
0 & 1 & * & * & * & * \\
0 & 0 & 1 & * & * & * \\
0 & 0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix},$$

где на местах * стоят 0 или 1. Написана программа на C, которая, перебирая все возможные матрицы данного вида, определяет типы графов. В результате получено 37 типов и 50 графово неэквивалентных бент-функций. В таблице приведены все типы в левой колонке и соответствующие им бент-функции — в правой. Функция задана вектором лексикографически упорядоченных коэффициентов в квадратичной части АНФ (в скобках указан возможный способ её построения из бент-функции от четырёх переменных).

№ п/п	Тип	Функция
1	111111	100000000100001 (iter1)
2	2 2 1 1 1 1	100001000100001 (iter1)
3	2 2 2 2 1 1	100001000100101 (iter2)
4	3 2 2 1 1 1	100001001001100 (iter1)
		100001001100001 (iter3)
5	3 2 2 2 2 1	100001001100101
		100001000010111
6	3 3 2 2 1 1	100001001110001 (iter1)
		100001000110101 (iter2)
7	3 3 2 2 2 2	011001011100001
•		101101001100001
8	3 3 3 1 1 1	100001010110001 (iter2)
9	3 3 3 2 2 1	100001001100111 (iter2)
		100001001110101
		100001001100111
10	3 3 3 3 1 1	100001010110110 (iter2)
		111001100100001 (iter1)
		111000000110101 (iter1)
11	3 3 3 3 2 2	110011100100101
		110101001100101
		111001001100101
		101101001100101
12	4 2 2 2 1 1	100001101100001 (iter3)
13	4 3 2 2 2 1	100001101100101
		100001100100111

№ п/п	Тип	Функция
14	4 3 3 2 1 1	100001101100011
15	4 3 3 2 2 2	111011000100101
16	4 3 3 3 2 1	111100001110100 (iter3)
17	4 3 3 3 3 2	110011000110111
18	4 4 3 2 2 1	100001101100111
19	4 4 3 3 1 1	100001101101110 (iter2)
20	4 4 3 3 2 2	110001011110011
21	4 4 3 3 3 1	100001100111111
22	4 4 3 3 3 3	111011001110101
23	4 4 4 3 3 2	011101001110111
24	4 4 4 4 3 1	100001101111111
25	4 4 4 4 3 3	111001100010111
		110101101100111
26	5 2 2 2 2 1	100001111100001
27	5 3 3 2 2 1	100001111100101
28	5 3 3 3 2 2	110001000111111
29	5 3 3 3 3 3	110101001111110
30	5 4 3 3 2 1	1000011111111100
31	5 4 4 3 2 2	110111000111101
32	5 4 4 4 3 2	111101000111111
33	5 4 4 4 4 1	100001111111111
34	5 5 3 3 3 3	111001100111111
35	5 5 4 4 3 3	111001111111011
36	5 5 5 4 4 3	111101111111110
37	555555	11111111111111

Поясним обозначения. Конструкция iter1 означает, что к бент-функции от четырёх переменных добавляется слагаемое x_5x_6 ; iter2—слагаемое $x_ix_5 \oplus x_jx_6$, где $i,j \in \{1,2,3,4\}$; iter3—слагаемое $x_ix_5 \oplus x_5x_6$, где $i \in \{1,2,3,4\}$. Пример: АНФ функции, заданной вектором 100001101100011, имеет вид $x_1x_2 \oplus x_2x_3 \oplus x_2x_4 \oplus x_2x_6 \oplus x_3x_4 \oplus x_4x_6 \oplus x_5x_6$. Данное исследование помогает выявить общие закономерности построения бент-функций от (n+2) переменных с помощью бент-функций от n переменных.

ЛИТЕРАТУРА

1. Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V. 20. No. 3. P. 300–305.

УДК 519.7

СЛАБОЦЕНТРАЛЬНЫЕ КЛОНЫ И ПРОБЛЕМА ПОЛНОТЫ В $\mathbf{H}\mathbf{U}\mathbf{X}^1$

Н. Г. Парватов

Проблема полноты и критериальные системы. Пусть E — конечное множество. Через P_E обозначается множество функций $f:E^n\to E$ при всевозможных целых положительных n. Классы таких функций, замкнутые операциями суперпозции и

 $^{^{1}}$ Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (гос. контракт № $\Pi 1010$).