УДК 519.17

О НЕКОТОРЫХ СВОЙСТВАХ ПРЕДФРАКТАЛЬНЫХ ГРАФОВ1

А. А. Кочкаров, Л. И. Сенникова, Н. Н. Болуров

Фрактальные графы [1, 2] используются для моделирования структур, растущих по одним и тем же правилам независимо от точки роста. Не исключается множественный одновременный рост во всей структуре системы. Формальным отражением этих правил является операция замены вершины затравкой (ЗВЗ) [1, 2], она же лежит в основе определения фрактальных графов.

Термином «затравка» условимся называть какой-либо связный граф H=(W,Q). Суть операции ЗВЗ заключается в следующем. В данном графе G=(V,E) у намеченной для замещения вершины $\tilde{v}\in V$ выделяется множество $\tilde{V}=\{\tilde{v}_j:j=1,2,...,|\tilde{V}|\}$ смежных ей вершин. Далее из графа G удаляется вершина \tilde{v} и все инцидентные ей ребра. Затем каждая вершина $\tilde{v}_j\in \tilde{V}$ соединяется ребром с одной из вершин затравки H=(W,Q). Вершины соединяются произвольно (случайным образом) или по определенному правилу.

Предфрактальный граф будем обозначать через $G_L = (V_L, E_L)$, где V_L — множество вершин графа, а E_L — множество его ребер. Определим его рекуррентно, поэтапно, заменяя каждый раз в построенном на предыдущем этапе l=1,2,...,L-1 графе $G_l=(V_l,E_l)$ каждую его вершину затравкой H=(W,Q). На этапе l=1 предфрактальному графу соответствует затравка $G_1=H$. Об описанном процессе говорят, что $nped \phi pakmanbhuŭ граф <math>G_L=(V_L,E_L)$ порожден затравкой H=(W,Q). Процесс порождения предфрактального графа G_L , по существу, есть процесс построения последовательности предфрактальных графов $G_1, G_2, ..., G_l, ..., G_L$, называемой mpaekmopueŭ. Фрактальный граф G=(V,E), порожденный затравкой H=(W,Q), определяется бесконечной траекторией. Ранг L определяет «возраст» (число этапов порождения) и размер (число вершин) предфрактального графа.

Использование операции ЗВЗ в процессе порождения предфрактального графа G_L для элементов $G_l = (V_l, E_l), l \in \{1, 2, ..., L-1\}$, его траектории позволяет ввести отображение φ , такое, что $\varphi(V_l) = V_{l+1}, \ \varphi^t(V_l) = V_{l+t}, \ t = 1, 2, ..., L-l$.

Обобщением описанного процесса порождения предфрактального графа G_L является случай, когда вместо единственной затравки H используется множество затравок $\mathscr{H} = \{H_1, H_2, \ldots, H_t, \ldots, H_T\}, T \geqslant 2$. Суть этого обобщения состоит в том, что при переходе от графа G_{l-1} к графу G_l каждая вершина замещается некоторой затравкой $H_t \in \mathscr{H}$, которая выбирается случайно или согласно определенному правилу, отражающему специфику моделируемого процесса или структуры.

Последовательное выделение подграф-затравок $z_s^{(l)}$ на графах G_1, G_2, \ldots, G_L из траектории предфрактального графа G_L разбивает множество ребер E_L на непересекающиеся подмножества подграф-затравок $Z(G_L) = \left\{ z_s^{(l)} : l = \overline{1,L}, s = \overline{1,n^{l-1}} \right\}$, где n = |W|. Такое разбиение на подмножества позволяет сохранить информацию о смежности старых ребер на момент их появления в предфрактальном графе. В траектории переход от графа G_{l-1} к G_l осуществляется $|V_{l-1}| = n^{l-1}$ операциями ЗВЗ, поэтому общее число использованных затравок в порождении предфрактального графа G_L равно

 $^{^{1}}$ Работа поддержана грантом РФФИ № 10-01-00786-а.

 $1+n+n^2+\ldots+n^{L-1}=rac{n^L-1}{n-1}.$ Тогда мощность множества $Z(G_L)$ всех подграф-затравок из траектории графа G_L также равна $rac{n^L-1}{n-1}.$

Число точек сочленения графа H = (W,Q) обозначим через m(H).

Теорема 1. Для всякого предфрактального графа G_L , порожденного затравкой H=(W,Q), справедливы верхняя и нижняя оценки числа точек сочленения $m(H)n^{L-1} \leqslant m(G_L) \leqslant m(H)n^{L-1} + \frac{n^L-n}{n-1}$, если смежность старых ребер одного ранга не нарушается.

Число мостов графа H = (W, Q) обозначим через k(H).

Теорема 2. Для всякого предфрактального графа $G_L = (V_L, E_L)$, порожденного затравкой H = (W, Q), справедливы верхняя и нижняя оценки числа мостов:

$$k(H) \leqslant k(G_L) \leqslant k(H) \frac{n^L - n}{n - 1}.$$

ЛИТЕРАТУРА

- 1. *Кочкаров А. М.* Распознавание фрактальных графов. Алгоритмический подход. Нижний Архыз: РАН САО, 1998.
- 2. Кочкаров А. А., Кочкаров Р. А. Параллельный алгоритм поиска кратчайшего пути на предфрактальном графе // Журн. вычислит. матем. и матем. физики. 2004. Т. 44. № 6. С. 1157—1162.

УДК 519.17: 681.3

КОМПАКТНЫЕ ГРАФЫ И ДЕТЕРМИНИРОВАННЫЙ АЛГОРИТМ ИХ СИНТЕЗА

В. А. Мелентьев

Проблема анализа и синтеза структур вычислительных систем (BC) традиционно решается методами теории графов. При этом между множествами модулей BC и вершин V графа G(V, E) и между множествами линий связи и ребер E графа устанавливают биективные соответствия; задержки при этом оценивают метрическими характеристиками соответствующих графов — их диаметром d или радиусом. В рамках решения проблемы синтеза структур BC рассматривается синтез s-регулярного графа порядка n = |V| с минимально возможным при значениях n и s диаметром d. Такие графы далее называем n(s)-компактными.

Решение задачи основано на предложенном в [1] описании графа проекциями. Проекция $P(v_j)$ графа G(V,E) является многоуровневой конструкцией, на нулевом уровне которой расположена ракурсная вершина v_j из V. Порожденное ею подмножество вершин первого уровня V_{1j} содержит все вершины ее окружения $\mathcal{N}(v_j)$, а i-й уровень $(i \ge 1)$ представляет собой совокупность подмножеств вершин, каждое из которых порождено вершиной (i-1)-го уровня и является окружением этой вершины без вершин, предшествующих ей в проекции. Вершине v_{ij} k-уровневой проекции $P_k(v_0)$ соответствует упорядоченное множество вершин $W(v_{ij}) = (v_0, v_{10}, \ldots, v_{ij})$, представляющее собой простую цепь из ракурсной вершины v_0 нулевого уровня этой проекции в вершину v_{ij} i-го уровня $(i \le k)$; длина этой цепи $L(v_0, v_{ij}) = i$. В общем случае некоторые вершины проекции $P_k(v_0)$ могут быть m_{ij} -кратными $(1 \le m_{ij})$. Значение кратности m_{ij} соответствует числу простых цепей из ракурсной вершины v_0 в вершину v_{ij} . Номер i уровня