Можно доказать утверждения, аналогичные утверждениям 2 и 3, которые показывают, какие подстановки из множеств $\Gamma_N(2q+t-1)$, $\Gamma_N(2q+t)$ принадлежат произведению $\Gamma_N(q) \cdot \Gamma_N(q+t)$.

ЛИТЕРАТУРА

1. *Пичкур А. Б.* Описание класса подстановок, представимых в виде произведения двух подстановок с фиксированным числом мобильных точек // Прикладная дискретная математика. Приложение. 2011. № 4. С. 16–17.

УДК 519.7

О КОМБИНАТОРНЫХ СВОЙСТВАХ ГРУППЫ, ПОРОЖДЁННОЙ XL-СЛОЯМИ 1

Б. А. Погорелов, М. А. Пудовкина

Алгоритмы блочного шифрования реализуются итеративным применением более простых преобразований, которые должны обеспечивать свойства перемешивания, рассеивания и усложнения. Для получения данных свойств обычно используются слои преобразований трёх типов: наложение ключа (X-слой), преобразования над отдельными частями блока текста (слой s-боксов) и линейное преобразование (линейный слой, или L-слой). Блочные шифрсистемы с таким построением раундовых преобразований и побитным подмешиванием раундового ключа в каждом раунде называют XSL-сетями. Ряд линейных преобразований, используемых в линейном слое в алгоритмах шифрования и обеспечивающих хорошее рассеивание, являются приводимыми. Естественно, приводимыми являются и характеристические многочлены подстановочных матриц, используемых в SP-сетях. Это приводит к импримитивности подгруппы C(g) аффинной группы $AGL_n(2)$, порождённой слоем наложения раундового ключа (т.е. всеми сдвигами) и приводимой невырожденной матрицей $g \in GL_n(2)$. В данной работе рассматриваются свойства графов орбиталов группы C(g).

Пусть \mathbb{N} — множество всех натуральных чисел; V_n — векторное пространство размерности n над GF(2); $X^{\times} = X \setminus \{0\}$; \tilde{g} — матрица линейного преобразования g в стандартном базисе $\varepsilon_0, \ldots, \varepsilon_{n-1}$, где $\varepsilon_i = (0, \ldots, 0, 1, \underbrace{0, \ldots, 0}_i) \in V_n$, $i \in \{0, \ldots, n-1\}$; GL_n —

полная линейная группа; $\chi_g(x)$ — характеристический многочлен линейного преобразования $g \in GL_n(2)$; $m_{\gamma,g}(x)$ — минимальный многочлен вектора $\gamma \in V_n^{\times}$ относительно преобразования g.

Напомним, что орбиталами группы G, действующей на множестве X, называются орбиты группы G при её действии на множестве X^2 . Действие группы G на множестве X^2 задано как $(\alpha, \beta)^f = (\alpha^f, \beta^f)$ для всех $(\alpha, \beta) \in X^2$ и $f \in G$.

Лемма 1. Для произвольного преобразования $g \in GL_n$ и векторов $\alpha, \beta, \alpha', \beta' \in V_n$, $\alpha \neq \beta, \alpha' \neq \beta'$, тогда и только тогда $(\alpha', \beta') \in (\alpha, \beta)^{C(g)}$, когда $\alpha' \oplus \beta' \in (\alpha \oplus \beta)^{\langle g \rangle}$.

Таким образом, различными нетривиальными графами орбиталов группы C(g) являются $\bar{\Gamma}_{(\mathbf{0},\gamma_1)}(g),\ldots,\bar{\Gamma}_{(\mathbf{0},\gamma_{d-1})}(g)$, где $\gamma_1^{\langle g\rangle},\ldots,\gamma_{d-1}^{\langle g\rangle}$ —попарно различные орбиты группы $\langle g\rangle$ на V_n^{\times} . Среди графов орбиталов группы C(g) могут встречаться изоморфные.

Существует тесная связь между строением характеристического многочлена $\chi_g(x)$ преобразования g, примитивностью (2-транзитивностью) и связностью графов орбиталов группы C(g). Так, группа C(g) примитивна тогда и только тогда, когда много-

¹Работа выполнена при поддержке гранта Президента РФ НШ № 6260.2012.10e

член $\chi_g(x)$ неприводим. Кроме того, группа C(g) 2-транзитивна тогда и только тогда, когда многочлен $\chi_g(x)$ примитивен.

Утверждение 1. Для произвольных вектора $\gamma \in V_n^{\times}$, преобразования $g \in GL_n$ с характеристическим многочленом $\chi_g(x)$ граф $\bar{\Gamma}_{(\mathbf{0},\gamma)}(g)$ связен для всех векторов $\gamma \in V_n^{\times}$ тогда и только тогда, когда характеристический многочлен $\chi_g(x)$ неприводим.

Утверждение 2. Для вектора $\gamma \in V_n^{\times}$ граф $\bar{\Gamma}_{(\mathbf{0},\gamma)}(g)$ связен тогда и только тогда, когда $m_{\gamma,g}(x) = \chi_g(x)$. Если группа C(g) примитивна, то все её графы орбиталов изоморфны.

В алгебраической теории графов наибольший интерес представляют следующие классы графов: вершинно-транзитивные, рёберно-транзитивные, дистанционно-регулярные, дистанционно-транзитивные [1].

Утверждение 3. Пусть $n \geqslant 2$, $i \in \{1, \ldots, d-1\}$, $\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g)$ — нетривиальный связный граф диаметра $b \geqslant 2$. Тогда: а) $\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g)$ — рёберно-транзитивный граф; б) если $\gamma_i^{\langle g \rangle}$ является базисом V_n , то граф $\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g)$ является дистанционно-транзитивным и $\mathrm{Aut}\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g) \approx S_2 \uparrow S_n$.

Графом Хемминга на V_n будем называть граф с множеством вершин V_n и множеством рёбер $\{(\alpha,\beta)\in V_n^2:\chi_n(\alpha,\beta)=1\}$. Очевидно, что если граф изоморфен графу Хемминга, то его метрика изоморфна метрике Хемминга. Отметим, если множество $\gamma_i^{\langle g \rangle}$ является базисом V_n , то граф $\bar{\Gamma}_{(\mathbf{0},\gamma_i)}(g)$ изоморфен графу Хемминга и является дистанционно-регулярным.

Теорема 1. Пусть $n \geqslant 2$, преобразование $g \in GL_n$ и вектор $\gamma \in V_n$ такие, что

$$m_{\gamma,g}(x) = x^{r(q-1)} \oplus x^{r(q-2)} \oplus \ldots \oplus x^r \oplus 1 = \frac{(x^r)^q - 1}{x^r - 1},$$

где $rq=m=\left|\gamma^{\langle g\rangle}\right|$. Граф $\bar{\Gamma}_{(\mathbf{0},\gamma)}(g)$ дистанционно-регулярный тогда и только тогда, когда выполняется одно из условий: а) r=1; б) $r\geqslant 2$ и q=3.

ЛИТЕРАТУРА

1. Godsil C. and Royle G. Algebraic Graph Theory. Springer Verlag, 2001.

УДК 519.14

О БУЛЕВЫХ ФУНКЦИЯХ, ПОЧТИ УРАВНОВЕШЕННЫХ В ГРАНЯХ1

В. Н. Потапов

Обозначим через E^n множество упорядоченных двоичных наборов (вершин) длины n. Введём операцию $[x,y]=(x_1y_1,\ldots,x_ny_n)$ для наборов $x,y\in E^n$. Количество единиц в наборе $y\in E^n$ называется весом набора и обозначается через $\mathrm{wt}(y)$. Множество вершин чётного веса будем обозначать через E^n_0 (нечётного — через E^n_1) . Гранью размерности $(n-\mathrm{wt}(y))$ называется множество $E^n_y(z)=\{x\in E^n: [x,y]=[z,y]\}$.

Пусть $S \subset E^n$; через χ^S будем обозначать характеристическую функцию множества S. Функция χ^S называется корреляционно-иммунной порядка (n-m), если для любой грани $E^n_y(z)$ размерности m пересечения $E^n_y(z) \cap S$ имеют одинаковую мощность.

 $^{^1}$ Работа выполнена при поддержке РФФИ (проекты 11-01-997, 10-01-00616) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009−2013 гг. (гос. контракт № 02.740.11.0362).