- 8. Агибалов Г. П. Элементы теории дифференциального криптоанализа итеративных блочных шифров с аддитивным раундовым ключом // Прикладная дискретная математика. 2008. № 1. С. 34–42.
- 9. *Пестунов А. И.* О вероятности протяжки однобитовой разности через сложение и вычитание по модулю // Прикладная дискретная математика. 2012. № 4. С. 53–60.
- 10. Selçuk A. A. On probability of success in linear and differential cryptanalysis // J. Cryptology. 2007. No. 21. P. 131–147.
- 11. Словарь криптографических терминов / под ред. Б. А. Погорелова и В. Н. Сачкова. М.: МНЦМО, 2006. 94 с.
- 12. Погорелов Б. А., Черемушкин А. В., Чечета С. И. Об определении основных криптографических понятий // Доклад на конф. «Математика и безопасность информационных технологий», МаБИТ-03, МГУ, 23–24 октября 2003. М., 2003.
- 13. Knudsen L. R., Robshaw M. J. B., and Wagner D. Truncated differentials and Skipjack // LNCS. 1999. V. 1666. P. 165–180.

УДК 056.55

УЯЗВИМОСТЬ КРИПТОСИСТЕМЫ МАК-ЭЛИСА, ПОСТРОЕННОЙ НА ОСНОВЕ ДВОИЧНЫХ КОДОВ РИДА — МАЛЛЕРА

И.В. Чижов, М.А. Бородин

Предлагается новый алгоритм восстановления секретного ключа по открытому для криптосистемы Мак-Элиса, построенной на основе двоичных кодов Рида — Маллера RM(r,m). В случае, если значение d=(r,m-1) ограничено, алгоритм имеет полиномиальную сложность $O(n^d+n^4\log_2 n)$, где $n=2^m$. Практические результаты показывают, что предложенная атака позволяет осуществить взлом криптосистемы Мак-Элиса, построенной на основе двоичного кода Рида — Маллера длины n=65526 битов, менее чем за 7 ч на персональном компьютере.

Ключевые слова: κ punmocucme max max

Рассматривается криптосистема Мак-Элиса, оригинальная версия которой использует коды Гоппы [1]. В 1994 г. В. М. Сидельников в работе [2] предложил использовать для построения криптосистемы Мак-Элиса коды Рида — Маллера, которые позволяют увеличить скорость расшифрования и передачи криптограммы.

На сегодняшний день самым успешным из опубликованных алгоритмов восстановления секретного ключа по открытому для криптосистемы Мак-Элиса, основанной на двоичных кодах Рида — Маллера RM(r,m), является алгоритм Л. Миндера и А. Шокроллахи, предложенный ими в 2007 г. в [3]. Этот алгоритм имеет субэкспоненциальную сложность, его идея заключается в сведении задачи взлома криптосистемы с параметрами кода RM(r,m) к такой же задаче, но для кода RM(1,m). В данной работе предложен другой алгоритм сведения, который имеет полиномиальную сложность для некоторого подмножества кодов Рида — Маллера.

Полученные теоретические результаты можно кратко представить в виде теорем.

Теорема 1. Пусть (r, m-1) = 1. Тогда существует алгоритм со сложностью $O(n^4 \log_2 n)$ битовых операций, который по порождающей матрице кода $RM^{\sigma}(r, m)$ находит перестановку σ' , такую, что $RM^{\sigma \cdot \sigma'}(r, m) = RM(r, m)$.

И обобщение теоремы 1:

Теорема 2. Пусть (r, m-1) = d > 1. Тогда существует алгоритм со сложностью $O(n^d + n^4 \log_2 n)$ битовых операций, который по порождающей матрице кода $RM^{\sigma}(r, m)$ находит перестановку σ' , такую, что $RM^{\sigma \cdot \sigma'}(r, m) = RM(r, m)$.

Это означает, что для параметров кода RM(r,m), у которых (r,m-1) ограничен, предложенная атака имеет полиномиальную сложность.

Теоретические результаты подтверждаются практическими исследованиями (табл. 1 и 2): алгоритм реализован программно и запускался на ноутбуке с процессором 2,1 ГГц. Для тех параметров криптосистемы, когда применение алгоритма не даёт асимптотического ускорения, используется символ «М». Если алгоритм сводит исходную задачу (r,m) к задаче с меньшей трудоёмкостью (d,m), то это отмечено в табл. 2 символами (d,m).

Таблица 1 Результат Л. Миндера и А. Шокроллахи (процессор 2,4 ГГц)

	m									
r	8	9	10	11						
2	$0,04\mathrm{c}$	$0,\!24{ m c}$	$12{,}14\mathrm{c}$	1,77 c						
3	$0.18\mathrm{c}$	1,26 c	$16,5\mathrm{c}$	5 м 20 с						
4		2 м 57 с	22 ч 50 м	10д11ч55м						

 ${
m T}\,{
m a}\,{
m f}\,{
m n}\,{
m u}\,{
m ц}\,{
m a}\,\,2$ Наш результат (2,1 ${
m \Gamma}{
m \Gamma}{
m u}$)

	m									
r	8	9	10	11	12	13	14	15	16	
2	$0,\!007{\rm c}$	M	$0,48\mathrm{c}$	M	6 c	M	3 м 13 с	M	2 ч 30 м	
3	$0,\!01\mathrm{c}$	$0.2\mathrm{c}$	M	$1,\!35{ m c}$	19 c	M	5 м 29 с	30 м 31 с	M	
4	$0,043{\rm c}$	M	$0,43\mathrm{c}$	(2,11)	15 c	M	7 м 10 с	(2,15)	3 ч 28 м	
5	$0,042{\rm c}$	$0.4\mathrm{c}$	0,8 c	M	$16,5\mathrm{c}$	2м1с	14 м 12 с	53 м	M	
6		(2,9)	(3,10)	(2,11)	23 с	M	9 м 28 с	14 м 16 с	(3,16)	
7			$0.86\mathrm{c}$	$3,2\mathrm{c}$	25 c	3 м 16 с	10 м 54 с	M	6 ч 43 м	

ЛИТЕРАТУРА

- 1. $\mathit{Мак-Вильямс}\ \Phi$. Дэк., $\mathit{Слоэн}\ H$. Дэк. Теория кодов, исправляющих ошибки. М.: Связь, 1979.
- 2. Cudeльников В. М. Открытое шифрование на основе двоичных кодов Рида Маллера // Дискретная математика. 1994. Т. 6. № 2. С. 3–20.
- 3. Minder L. and Shokrollahi A. Cryptanalysis of the Sidelnikov cryptosystem // LNCS. 2007. V. 4515. P. 347–360.