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NONPARAMETRIC ESTIMATION OF ACTUARIAL PRESENT VALUE
OF DEFERRED LIFE ANNUITY

The paper deals with the estimation problem of the actuarial present value of the deferred life annuity. The nonpara-
metric estimator of the deferred life annuity was constructed. We found the principal term of the asymptotic mean
squared error (MSE) of the proposed estimator and proved its asymptotic normality. The simulations show that the
empirical MSE of the annuity estimator decreases when the sample size increases.
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Let X be the age of an individual and at the moment t = 0 payments start. The idea of the r-year deferred
life annuity in accordance with [1. P. 174] is this: from the moment t + r = r, an individual starts receiving
money once a year, which we take as a monetary unit, and payments are made only during the lifetime of an
individual. It is known that the deferred life annuity is associated with the appropriate type of insurance. Thus,
the average total cost of the present continuous r-year deferred life annuity is given by the following formula
(see [1. P. 184]):

1- A
— _ r|
r‘ax (6) - 6 )

where r‘R =.|'e‘5t f, (t)dt is the net premium (the expectation of the present value of an insured unit sum for

f(x+t)

the deferred life insurance at age x), & is a force of interest, f, (t) = is a probability density of future

lifetime of an individual T, = X —x [1. P. 62], f(X) is a probability density of lifetime of an individual X,
S(x)=P(X >x) is asurvival function. Introduce the random variable

—oT,

z(x)=l_eTx,TX>r. 1)
Then, by averaging z(x) (1), we get the formula of the deferred life annuity (see [2-4]):
_ 1 d(X,8,r)
a®)=E(z)==|1-———=|, 2
NG ()6[ S(X)] 2

where E is the symbol of the mathematical expectation,

d(x,8,r) =™ T e dF(t),

X+r
F(x)=P(X <x)=1-S(x) is a distribution function.
Note that the whole life annuity a,(8) [2] is the special case of the deferred life annuity (2) at r = 0.

1. Construction of the Deferred Annuity Estimator

Assume that we have a random sample X, ...., X, of N individuals’ lifetimes. Using the empirical sur-
vival function
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Sy (¥) :%%I(xi > X),

where 1(A) is the indicator of an event A, obtain the following estimator of (2):

—N _E < N _ :l _(DN(X,S,I')
13 (8)_8(1 SN iZﬂ:exp( SX)I(X, > X+ r)j 8(1 500 j (3)

X

X N

@, (x,5,1) =eWZexp(—8Xi)I(Xi >X+T).

2. Bias and Mean Squared Error of the Estimator a, (5)

Here we will obtain the principal term of the asymptotic MSE and the bias convergence rate of the
estimator (3). Introduce the notation according to [5]: ty = (t;,toy,--tey)" IS @n s-dimensional vector with
the components tin =tjn (x):tjN (X5 X,y X j=1,_s, xeR%, R" is the a-dimensional Euclidean space;
H(t):R* — R is a function, where t=t(x) = (t,(x),...,t;(x))" is an s-dimensional bounded vector function;
N, (u,0) isthe s-dimensional normally distributed random variable with a mean vector and covariance matrix
oH (2)

oz,

Folz=t
bution; || x|| is the Euclidean norm of a vector x; R is the set of natural numbers.

o=06(X); VH(t)=(H,(t),....H (1)), H; )= . j=1s; = is the symbol of convergence in distri-

Definition 1. The function H(t):R* — R and the sequence {H(tN)} are said to belong to the class
N, (t;y), provided that:

1) there exists an e-neighborhood

c={z:| Z, -t |<8,i=1,_s},

in which the function H(z) and all its partial derivatives up to order v are continuous and bounded,

2) for any values of variables X,...., X, the sequence {H(t,)} is dominated by a numerical sequence
C,d, suchthat d, T oo, as N — o0, and 0<y <oo,

Theorem 1 [5]. Let the conditions

1) H(@) ., {Ht)} e N, (6,

2) Ety —t =0(dy ")
hold for all i € R. Then, for every ke R,

‘E[H(tN)— HO] -E[VH®) -, -]

:O(de(ku)/z). (4)

If in formula (4) k = 1, we obtain the principal term of the bias for H(t,), and at k = 2, we have the

principal term of the MSE.
Theorem 2. If S(x) >0 and S(t) is continuous at a point x, then

1) for the bias of (3), the following relation holds:
Io(, & 60| =|E( @ @) - @, @) =0(N);
2) the MSE of (3) is given by the formula
2
cD(x,28,r)—g) 2(x,8,r)/S(x)+O(N_3,2).
N6-S<(x)

U2(, @ (8)) = E(,3 (0) - @,(5)) =
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Proof. For the estimator r‘é)i“ (8) (3) in the notation of Theorem 1, we have: s =2;
ty =ty ton )" = (@ (%,8,1),Sy 00" dy =N; t=(t,t,)" =(D(x,8,1),S(X)";

_l _t_1 :1 _CD(X,S,I’) _ 7 . :1 _q)N(X!S’r) _ = N .
H(t)_s(l tzj 8[1 S(X) j 1P H) 6[1 Sy (X) ) B ()

1 o Ti
8S(X)" 852%(x)

VH(®) = (Hy (), H,0)" =[
The sequence {H(t,)} satisfies the condition 1) of Theorem 1 with C, = %(1+ e®), y=0. Indeed,

N
e™ 3 exp(—8X )I(X; > X+ 1)
=

lH(tN>|=11—Mg1(1+Mjgz 1 N )
i=1
N
eéxe—ﬁ(x+r).Z I(Xi > ¥4 I’)
<-— 1+ N i=1 Sg(l_i_e—ér).
ZI(Xl > X)
i=1

Further, the function H(t) satisfies the condition 1) in view of t, =S(x) > 0. Also, this function satisfies the
condition 2) due to Lemma 3.1 [6], as for all ie®R such inequalities hold: E{I'(X >x)}=S(x)<1,
E{e ™ T (X >x+n)}<e®e™S(x+r)=S(x+r) <1

It is well known that Sy (x) is the unbiased and consistent estimator of S(x) . Show that @ (x,5,r) is

the unbiased estimator of d(x,d,r) and calculate the variance of @ (x,3,r):

X
ED, (X,6,r)= eW E{% exp(—0X;)I(X; > X+ r)}: D(X,9,r),
i=1

25x

DD, (X,8,F) = =

NE iNlD{I(Xi >x+ e} = %(@(x,zﬁ, r-®(x,3,1)).

Considering that E(ty —t) =0 and all the conditions of Theorem 1 are fulfilled, in accordance with (4)

we get the order of the bias of f ay(s):
E(a (6) - 3&(®)—~ E[VH Oty ~0]| =[E(;a 0)- 36| =0(N )

. . . 0,,0 -
Find the components of the covariance matrix c(rax(a))z{ H 12} for the statistics @y, (x,8,r)and
62102

Sy (x):
o1 = ND{® (X,8,r)} =D(X,23,r) —D*(X,5,1); Oy = ND{Sy (X)} =S(X)(1—=S(X)); 015 =0 =
= N cov(Sy (), @y (x,8,1) = N (E {Sy ()@ (x,8,1)} —E{Sy ()} E{@y (x,8,)}) = (1= S(X)D(X,3,r).
Using the previous results on the bias and covariance matrix, we obtain
U?(, @ ()= E[VH®)(ty ~0)]" +O(N™?) = HZ(0)0y, + H3 (D)o, + 2H; (DH, (M), + O(N 2 ) =
M2
:(D(X,ZS,I’) (ZD 2(X365r)/s(x)+o(N—3/2). (5)
N&2S2(x)
The proof of Theorem 2 is completed.
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3. Asymptotic Normality of the Estimator f EXN ()
We need the following two Theorems.
Theorem 3 [7, Appendix 5]. If &,¢&,,...,&y.... IS a sequence of independent and identically distributed
N
s-dimensional vectors, E{¢,}=0, o(X)=E{&} ty :% > &, then,as N -0, /Nty = N (0,5(X)).
k=1

Theorem 4 [8]. Let x/ﬁ'tN = N {i,0(x)} , H(z) be differentiable at the point u, VH (i) #0. Then

S S S

VN (H(ty) - H(M)):Nl{z H,(wu;, XX H,-(u)cijp(u)]-
j=1 p=lj=1

Theorem 5. Under the conditions of Theorem 2

=N = D(X,28,r)—-d2(x,5,r)/S
IN(,a (8)—rax(6)):Nl[o, (120 07 (x5 <X)].

Proof. In the notation of Theorem 3, we have s =2, o(x)=0o( 8 (8)) . Thus,

TN {(@ 4 (%,8,1), Sy (0) = (@(x,5,1), S(0)} = N, ((0,0),0(,&,(5))).

The function H(z) is differentiable at the point t =((D(X,8),S(X)) and VH(t) = 0. Consequently, all the

conditions of Theorem 4 hold, and using (5), we obtain the desired result.
The proof of Theorem 5 is completed.

4. Simulations

. 1 if xe(ab] , . . .
Introduce the denotation Ix(a,b] = ] . Consider de Moivre’s model, for which the in-
0, if xeg(a,b]
dividual’s lifetime X is uniformly distributed in the interval (0, ), where ® is a limiting age. For this model
the probability density and survival function are defined by the following formulas:

X1, (0,0)

fo0=2C 50021 (,0) ©)
()] ()]
Now, using (6), we obtain
f )= f(x+t) _ It(O,m—x),
S(x) ®—X
a(&)—l(l—ofef"f(t)dt]—i(l— ! wfxe&dtj—i e et 0
TS T 5 o-xr S S(w-x) |

The present value of the 5-years deferred annuity for a person at the age x = 45 years when ® =100
years, 6 = 0,09531 (9,531%), and monthly payments in the size of 1000 rubles, is equal to

12000- 5 a,;(0,09531) =12000-9,581854 =114982 rubles.

Note that for such & the effective annual interest rate i =e® —1=0,1 (10%).
The simulations were carried out for de Moivre’s model under the above presented conditions. The
annuities and their estimators are presented in Fig. 1 for random samples X,..., X, of the sizes

N = 50, 100, 500, uniformly distributed in the interval (0, 100).
We will characterize the quality of estimators presented in Fig. 1 using the empirical MSE

> (,3,() - 3" ()
G(N,r,8) = X2 n .
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Fig. 1. Dependence on the age x of the 5-years deferred annuity (5 =0,09531)
and its estimators for the sample sizes N: a — 50; b — 100, ¢ — 500
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fo

The calculation results are given in Table I.

Table 1
Simulation results for the different sample sizes
N 25 50 100 250 500
G(N; 5; 0,09531) 1,632 0,815 0,413 0,117 0,052

So, according to Table 1, the quality of the deferred annuity estimators by the criterion G(N; 5; 0,09531)
improving when the sample size N is increasing.

Conclusion

In the paper, we found the principal term of the asymptotic MSE of the estimator f a, (). Also, the

llowing asymptotic properties of the estimator are proved: unbiasedness, consistency, and normality. Statis-

tical modeling within the framework of de Moivre’s model shows that the quality of estimation according

to

the empirical criterion G(N,r,d) improves with the growth of the sample size. Note that the improved

estimators of life annuities (3) can be obtained by substituting of empirical survival functions by the smooth
empirical survival functions (cf. [9-24]) and using auxiliary information of the different type [25-33], for
example, connected with random variables X, T, =X —x, T, —r.
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PaccmarpuBaercs mpo6iiemMa OlleHHBaHUS aKTyapHOH COBPEMEHHOIT CTOMMOCTH OTCPOYEHHOU peHThl. CHHTE3MpyeTCsl Henapamer-
pudeckast OlleHKa OTCPOUSHHO peHThl. HaxoanTcs riaBHast 4acTh aCHMITOTHYECKON CPEeTHEKBAIPATHIECKOI OMIMOKU OL[EHKH U ee
TIpe/ieNIbHOe  pacmpeeneHne. MoenpoBaHie MOKa3bIBAET, YTO SMITHPHUECKas CPEeIHEKBaJgpaTHUECKass OMIMOKAa OIEHKH PEHTHI
YMEHBIIIAeTCs ¢ POCTOM 00BeMa BEIOOPKH.
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