УДК 533,9.08 DOI: 10.17223/00213411/62/10/129

В.П. ДЕМКИН. С.В. МЕЛЬНИЧУК. А.В. ПОСТНИКОВ

2D-МОДЕЛЬ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА В ГЕЛИИ АТМОСФЕРНОГО ДАВЛЕНИЯ, ФОРМИРУЕМОЙ ПОСЛЕ ИСКРОВОГО ПРОБОЯ: РАСЧЕТ ЭЛЕКТРОФИЗИЧЕСКИХ И ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК *

Методом конечных элементов проведен расчет динамики электрофизических и термодинамических характеристик плазмы гелия атмосферного давления после искрового пробоя 1 мм газоразрядного промежутка. При вычислениях использовалась 2d-аксиально-симметричная модель плазмы в дрейф-диффузионном приближении в сочетании с уравнениями Навье — Стокса и теплопроводности. Выбранные параметры электрической цепи, начальные и граничные условия разряда приводят к формированию локализованного в конечном объеме стационарного самостоятельного разряда постоянного тока ~ 0.1 А с температурой ~ 500 К. Проведен сравнительный анализ влияния разогрева плазмы на динамику ее электрофизических характеристик и вид разряда.

Ключевые слова: плазма атмосферного давления, тлеющий разряд, численное моделирование плазмы, самосогласованная столкновительная модель, биомедицинские приложения.

Введение

Разработка газоразрядных источников низкотемпературной неравновесной плазмы (ННП) для биомедицинских приложений является одним из актуальных направлений развития плазменной медицины [1]. Основанием для этого служат достижения и успехи в применении плазмы и плазменных технологий в клинической практике в области онкологии, дерматологии, стоматологии, фармакологии, лечении внутренних болезней [2–8]. Газоразрядная плазма обладает антимикробным свойством и применяется для стерилизации медицинского оборудования и инструментов, лечения ран и остановки кровотечения, регенерации биологических тканей [9].

Область практического применения ННП в медицине зависит от температуры газа: плазма с температурой газа 100–150 °C используется для стерилизации и обеззараживания медицинской аппаратуры, плазма с температурой газа 60–100 °C применяется для ускорения свертывания крови и абляции биотканей, а также стерилизации чувствительных к температуре предметов, и, наконец, плазма с температурой газа 20–60 °C наиболее распространена в медицине для проведения *in vivo* и *in vitro* экспериментов и обработки живых тканей и клеток без их термического или электрического разрушения [10].

Разработанные устройства для получения низкотемпературной неравновесной плазмы можно условно разделить на три типа: 1) источники первичной плазмы (direct plasma sources), в которых биологический объект-мишень используется как один из электродов; 2) источники вторичной плазмы (indirect plasma sources), в которых плазма создается в самом источнике, а затем транспортируется на обрабатываемую поверхность посредством газа-носителя или за счет диффузии; 3) так называемые гибридные источники плазмы (hybrid plasma sources), в которых плазма создается посредством множества нано- и микроразрядов на сетчатом проводящем электроде [9].

Более универсальными источниками ННП являются источники второго типа, где обрабатываемую мишень можно отделить от самого источника, что очень важно, когда мишень находится в труднодоступном месте. Кроме того, размер и форму плазменной струи от таких источников можно масштабировать в широких пределах. Также следует учесть, что распространение плазменной струи в окружающем газе приводит к изменению состава доставляемой к мишени плазмы [11, 12].

Наиболее распространенными источниками плазмы в биомедицинских приложениях являются приборы, разработанные на основе неравновесной газоразрядной плазмы, получаемой в дуговых, искровых и ВЧ-плазмотронах, а также в разрядах с диэлектрическим барьером при атмосферном давлении [13]. Основными механизмами воздействия плазмы на живые объекты являются взаимодействия активных частиц, генерируемых в разряде и при взаимодействии плазмы с несущим газом: электронов, ионов, реактивных кислород- и азотсодержащих соединений (ROS) и

^{*} Работа выполнена в рамках Tomsk State University Competitiveness Improvement Program.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725