КРАТКИЕ СООБЩЕНИЯ

УДК 537.8.029 DOI: 10.17223/00213411/62/10/191

T.Д. MАЛИНОВСКАЯ I , В.А. ЖУРАВЛЕ B^{2} , С.В. MЕЛЕНТЬЕ B^{3} , В.В. ЖЕ K^{I}

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ МАТЕРИАЛОВ СИСТЕМЫ Dy-In-O *

Ключевые слова: оксид индия, оксид диспрозия, индат диспрозия, магнитная восприимчивость.

Дизайн и направленный синтез сложных неорганических соединений редкоземельных переходных 3d-металлов составляют интенсивно развиваемое направление современной неорганической химии, обусловленное как фундаментальной значимостью проблемы, так и необходимостью создания новых магнитных материалов различного назначения [1–3]. Целью данного исследования является установление взаимосвязи «состав – структура – магнитная восприимчивость» в семействе соединений системы Dy–In–O. Эти соединения получали путем растворения солей $In(NO_3)_3$ и $Dy(NO_3)_3$ в дистиллированной воде, последующего химического соосаждения гидроксидов диспрозия и индия из полученного раствора водным раствором 25 %-го аммиака при рН 10 с последующей промывкой и термообработкой порошка на воздухе при 1000 °C в течение 1 ч. Содержание индия в растворе солей менялось от 0 до 100 ат. %. Рентгенофазовый анализ (РФА) образцов выполняли на дифрактометре Rigaku Miniflex 600 с использованием CuK_α -излучения в интервале углов 10–90° (20) с шагом сканирования 0.02° и скоростью съемки 2 град/мин. Идентификацию дифракционных максимумов проводили с помощью баз данных PDF 4+, а также программы полнопрофильного анализа POWDER CELL 2.4. Магнитную восприимчивость определяли из изменения индуктивности катушки при помещении в нее порошкового образца с помощью прецизионного измерителя LCR Agilent E4980A. Измерения проводились при комнатной температуре. Ошибка измерений составляла ± 3 %.

На рис. 1 представлена зависимость удельной магнитной восприимчивости χ полученных образцов системы Dy–In–O от содержания в ней индия. Имея в своем составе парамагнитные (Dy³⁺) и диамагнитные (In³⁺) ионы, такие материалы демонстрируют переход от положительных значений χ (164.5·10⁻⁶ см³/г для Dy₂O₃) до отрицательных значений (–2,1·10⁻⁶ см³/г для In₂O₃). Немонотонный характер зависимости, вероят-

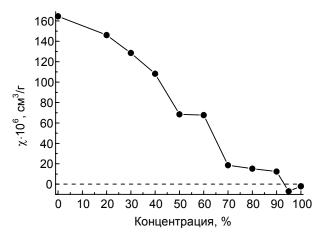


Рис. 1. Зависимость удельной магнитной восприимчивости χ образцов системы Dy–In–O от содержания в ней индия

но, обусловлен образованием в системе Dy–In–O соединения DyInO $_3$ с гексагональной орторомбической структурой. Как следует из таблицы, где представлены результаты РФА образцов системы Dy–In–O, в области концентраций индия 50 ат. % содержание DyInO $_3$ в системе достигает практически 100 %, а на зависимости удельной магнитной восприимчивости наблюдается «ступенька» при значениях $\chi = 68.4 \cdot 10^{-6}$ см 3 /г. Согласно опубликованным в работе [4] результатам исследования, это соединение является парамагнитным, магнитная восприимчивость которого точно следует закону Кюри — Вейса вплоть до температуры жидкого азота.

^{*} В статье использованы результаты, полученные в ходе выполнения проекта в рамках Программы повышения конкурентоспособности ТГУ среди ведущих мировых научно-образовательных центров.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725