2021 Математика и механика № 71

УДК 539.3 DOI 10.17223/19988621/71/9

В.В. Козлов, А.А. Маркин

КОНЕЧНЫЕ ДЕФОРМАЦИИ ТОРОИДАЛЬНОЙ ОБОЛОЧКИ¹

Рассматривается нелинейно-упругая осесимметричная модель тороидальной оболочки под действием внутреннего давления. Используются определяющие соотношения в виде квазилинейной связи тензора истинных напряжений с коротационным тензором Генки. Данный подход позволил естественным образом удовлетворить условию несжимаемости. Получена замкнутая система нелинейных обыкновенных дифференциальных уравнений относительно шести неизвестных функций. С помощью метода последовательных приближений дана оценка напряженно-деформированного состояния оболочки

Ключевые слова: тороидальная оболочка, нелинейная упругость, определяющие соотношения, метод последовательных приближений.

Исследование характеристик упругих оболочек при возникновении в них конечных деформаций является перспективным направлением развития механики, что подтверждается большим количеством современных публикаций на эту тему [1–5].

В настоящей работе рассмотрена нелинейно-упругая осесимметричная модель тороидальной оболочки под действием внутреннего давления. Выбор схемы следует из распространения деталей подобного рода и внимания исследователей к соответствующей проблематике [6–9]. При этом в работе [10] рассматривается половина тороидальной оболочки, в [11] изучается оболочка с эллиптическим сечением. В публикациях [12, 13] рассматривается тороидальная оболочка при воздействии внешнего и внутреннего давлений, изучается эффект устойчивости, возникающий при превышении внешним давлением внутреннего.

Постановка задачи в настоящей работе строится на определяющем соотношении в виде квазилинейной связи тензора истинных напряжений с коротационным тензором Генки, в то время как в работах [7, 9, 14, 15] используется закон Гука, не позволяющий естественным образом удовлетворить условию несжимаемости при конечных деформациях.

В отличие от исследований [14, 16], в которых для решения задач с тороидальными оболочками предлагается использовать метод конечных элементов, в настоящей работе используется метод последовательных приближений [17].

¹ Работа выполнена при частичной поддержке гранта Президента Российской Федерации (проект МД-1803.2019.1, формулировка постановки задачи) и РНФ (проект № 19-71-10008, оценка напряженнодеформированного состояния оболочки).

1. Кинематика процесса

Рассматривается напряженно-деформированное состояние оболочки, опорная поверхность которой имеет в начальном (недеформированном) состоянии форму тора и нагружается внутренним давлением *P*. Схема расчета представлена на рис. 1.

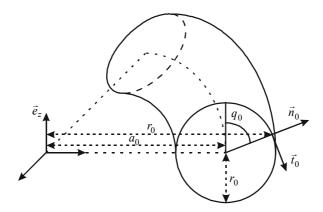


Рис. 1. Схема модели **Fig. 1.** Design of a model

Оболочка отнесена к цилиндрической системе координат r_0 , ϕ , z_0 . Радиусвекторы, соединяющие центр данной системы с материальными точками опорной поверхности, распределены по закону

$$\vec{x}_0 = (a_0 + \rho_0 \sin \theta_0) \vec{e}_r + \rho_0 \cos \theta_0 \vec{e}_z, \qquad (1.1)$$

где a_0 , ρ_0 — начальные размеры тора, θ_0 — угол, определяющий положение точек поперечного сечения опорной поверхности.

Положение точек опорной поверхности в начальный момент определяется координатами r_0 , ϕ_0 , z_0 , а в деформированном состоянии — координатами r, ϕ , z. В силу осевой симметрии $\phi = \phi_0$.

В результате положения точек деформированной поверхности будут определяться радиус-векторами

$$\vec{x}_0 = r(\theta_0)\vec{e}_r + z(\theta_0)\vec{e}_z. \tag{1.2}$$

Закон (1.2) учитывает изменение в процессе деформации поперечного сечения оболочки. Из закона движения (1.1), (1.2) следует, что движение поперечного сечения определяется двумя функциями от начальной координаты θ_0 :

$$r = r(\theta_0), \ z = z(\theta_0). \tag{1.3}$$

Положение точек оболочки, отстающих на расстояние ξ , отсчитываемое вдоль нормали к опорной поверхности (ОП), в начальном состоянии определяется в виде

$$\vec{x} = \vec{x}_0 + \xi_0 \vec{n}_0 = \vec{x}_0 + \xi_0 \left(\sin \theta_0 \vec{e}_r + \cos \theta_0 \vec{e}_z \right). \tag{1.4}$$

Положение тех же материальных точек в деформированном состоянии имеет вид

$$\vec{x} = \vec{x}_0 + \lambda_3(\theta_0)\xi_0\vec{n} . \tag{1.5}$$

Закон (1.5) предполагает выполнение обобщенной гипотезы Киргоффа — точки, лежащие на прямой вдоль начальной нормали \vec{n}_0 , остаются на прямой вдоль текущей нормали \vec{n} . При этом $\lambda_3(\theta_0)$ — относительное удлинение (укорочение) нормальных волокон.

Как известно [18], аффинор деформации связывает материальные элементарные векторы в начальном и деформированном состоянии.

Элементарный (бесконечно малый) вектор начального состояния имеет вид

$$d\vec{x} = \frac{\partial \vec{x}}{\partial \theta_0} d\theta_0 + \frac{\partial \vec{x}}{\partial \xi_0} d\xi_0 + \frac{\partial \vec{x}}{\partial \varphi} d\varphi.$$

Векторы-касательные к координатным линиям, обозначим как

$$\vec{e}_1 = \frac{\partial \vec{x}}{\partial \theta_0}; \vec{e}_2 = \frac{\partial \vec{x}}{\partial \varphi}; \vec{e}_3 = \frac{\partial \vec{x}}{\partial \xi_0}. \tag{1.6}$$

Из выражений (1.1), (1.4), (1.6) получим

$$\vec{e}_1 = \frac{\partial \vec{x}_0}{\partial \theta_0} + \xi_0 \vec{\tau}_0 = (\rho_0 + \xi_0) \vec{\tau}_0, \qquad (1.7)$$

где $\vec{\tau}_0 = \cos\theta_0 \vec{e}_r - \sin\theta_0 \vec{e}_z$ — единичный вектор касательной к линии θ_0 ; $\vec{n}_0 = \sin\theta_0 \vec{e}_r + \cos\theta_0 \vec{e}_z$ — единичный вектор вдоль ξ ;

$$\vec{e}_2 = \frac{\partial \vec{x}_0}{\partial \phi} + \xi_0 \sin \theta_0 \frac{\partial \vec{e}_r}{\partial \phi} = (a_0 + \rho_0 \sin \theta_0) \frac{\partial \vec{e}_r}{\partial \phi} + \xi_0 \sin \theta_0 \vec{e}_\phi =$$

$$= (a_0 + \rho_0 \sin \theta_0 + \xi_0 \sin \theta_0) \vec{e}_\phi;$$
(1.8)

$$\vec{e}_3 = \frac{\partial \vec{x}_0}{\partial \xi_0} = \sin \theta_0 \vec{e}_r + \cos \theta_0 \vec{e}_z = \vec{n}_0.$$

Пусть $\,h_0\,$ – толщина оболочки, тогда $\,-\frac{h_0}{2} \le \xi_0 \le \frac{h_0}{2}\,.$

Так как $a_0\gg h_0$, пренебрегаем слагаемым, содержащим ξ в формулах (1.7) и (1.8), тогда

$$\begin{aligned} \vec{e}_1 &\simeq \rho_0 \left(\cos \theta_0 \vec{e}_r - \sin \theta_0 \vec{e}_z \right) = \rho_0 \vec{\tau}_0; \\ \vec{e}_2 &\simeq \left(a_0 + \rho_0 \sin \theta_0 \right) \vec{e}_{\varphi}; \\ \vec{e}_3 &= \sin \theta_0 \vec{e}_r + \cos \theta_0 \vec{e}_z = \vec{n}_0. \end{aligned}$$

$$(1.9)$$

Используя представление отсчетного базиса в виде (1.9), найдем его контравариантные компоненты из условия

$$\vec{e}^i = g^{ik}\vec{e}_k \,, \tag{1.10}$$

где g^{ik} – компоненты обратной метрической матрицы.

Для определения g^{ik} найдем ковариантные компоненты метрической матрицы. Используя (1.9), получим

$$g_{11} = \vec{e}_1 \cdot \vec{e}_1 = \rho_0^2; \ g_{12} = g_{13} = g_{23} = 0;$$

$$g_{22} = \vec{e}_2 \cdot \vec{e}_2 = (a_0 + \rho_0 \sin \theta_0)^2; \ g_{33} = \vec{e}_3 \cdot \vec{e}_3 = 1.$$

Из условия

$$g_{ik}g^{kj}=\delta_i^j$$

находим компоненты обратной метрической матрицы

$$g^{11} = \frac{1}{g_{11}} = \frac{1}{\rho_0^2}; \ g_{22} = \frac{1}{(a_0 + \rho_0 \sin \theta_0)^2}; \ g_{33} = 1.$$
 (1.11)

Из выражений (1.9), (1.10) и (1.11) получим векторы контравариантного базиса

$$\vec{e}^{1} = g^{11}\vec{e}_{1} = \frac{1}{\rho_{0}} (\cos\theta_{0}\vec{e}_{r} - \sin\theta_{0}\vec{e}_{z}) = \frac{1}{\rho_{0}}\vec{\tau}_{0};$$

$$\vec{e}^{2} = g^{22}\vec{e}_{2} = \frac{1}{a_{0} + \rho_{0}\sin\theta_{0}}\vec{e}_{\phi} = \frac{1}{r_{0}}\vec{e}_{\phi};$$

$$\vec{e}^{3} = g^{33}\vec{e}_{3} = \vec{e}_{3} = n_{0} = \sin\theta_{0}\vec{e}_{r} + \cos\theta_{0}\vec{e}_{z},$$
(1.12)

Элементарный материальный вектор деформированного состояния представим в виде

$$d\vec{x} = \frac{\partial \vec{x}}{\partial \theta_0} d\theta_0 + \frac{\partial \vec{x}}{\partial \varphi} d\varphi + \frac{\partial \vec{x}}{\partial \xi_0} d\xi_0.$$

Используя выражения (1.2) и (1.5), получим следующие представления векторов материального базиса:

$$\vec{\beta}_{1} = \frac{\partial \vec{x}}{\partial \theta_{0}} \approx \frac{\partial \vec{x}_{0}}{\partial \theta_{0}} = r'\vec{e}_{r} + z'\vec{e}_{z};$$

$$\vec{\beta}_{2} \approx \frac{\partial \vec{x}_{0}}{\partial \varphi} = r \frac{\partial \vec{e}_{r}}{\partial \varphi} = r\vec{e}_{\varphi};$$

$$\vec{\beta}_{3} = \frac{\partial \vec{x}}{\partial \xi_{0}} = \lambda_{3}\vec{n},$$

$$(1.13)$$

где
$$r' = \frac{dr}{d\theta_0}$$
, $z' = \frac{dz}{d\theta_0}$.

Единичный вектор, касательный к меридиану, с учетом (1.13) принимает вид

$$\vec{\tau} = \vec{\vartheta}_1 / \sqrt{G_{11}} = (r'\vec{e}_r + z'\vec{e}_z) / \sqrt{G_{11}} ,$$
 (1.14)

где $G_{11} = \vec{\mathfrak{z}}_1 \cdot \vec{\mathfrak{z}}_1 = (r')^2 + (z')^2 = \lambda_1^2 \rho_0^2$; $\lambda_1 = \frac{|\vec{\mathfrak{z}}_1|}{\rho_0}$ — относительное удлинение мери-

дионального волокна.

Единичный вектор нормали к деформированной поверхности определяем, используя (1.15):

$$\vec{n} = \frac{\vec{3}_1 \times \vec{3}_2}{|\vec{3}_1||\vec{3}_2|} = \frac{1}{\lambda_1 \lambda_2 r_0 \rho_0} (r'\vec{e}_r + z'\vec{e}_z) \times r\vec{e}_{\phi} = \frac{1}{\lambda_1 \rho_0} (r'\vec{e}_z - z'\vec{e}_r), \qquad (1.15)$$

где $\lambda_2 = \frac{r}{r_0}$ — относительное удлинение окружного волокна.

С учётом данных выражений векторы материального базиса (1.13) запишем в виде

$$\vec{\vartheta}_1 = \lambda_1 \rho_0 \vec{\tau} \; ; \; \vec{\vartheta}_2 = r \vec{e}_{\varphi} = r_0 \lambda_2 \vec{e}_{\varphi} \; ; \; \vec{\vartheta}_3 = \lambda_3 \vec{n} \; .$$
 (1.16)

Представим тензор-аффинор Ф в следующем виде [18]:

$$\Phi = \overset{\circ}{\nabla} \vec{x} = \vec{e}^i \frac{\partial \vec{x}}{\partial x^i} = \vec{e}^i \vec{\exists}_i.$$

В нашем случае, используя формулы (1.12), (1.16), находим разложение аффинора по векторам локальных базисов

$$\Phi = \lambda_1 \vec{\tau}_0 \vec{\tau} + \lambda_2 \vec{e}_0 \vec{e}_0 + \lambda_3 \vec{n}_0 \vec{n} . \tag{1.17}$$

Построение мер деформаций и тензора поворота

Из определения меры деформаций Коши – Грина через тензор-аффинор находим ее диадное разложение по начальному локальному базису

$$\tilde{\boldsymbol{G}} = \boldsymbol{\Phi} \cdot \boldsymbol{\Phi}^{\mathrm{T}} = \lambda_1^2 \vec{\boldsymbol{\tau}}_0 \vec{\boldsymbol{\tau}}_0 + \lambda_2^2 \vec{\boldsymbol{e}}_{\boldsymbol{\phi}} \vec{\boldsymbol{e}}_{\boldsymbol{\phi}} + \lambda_3^2 \vec{\boldsymbol{n}}_0 \vec{\boldsymbol{n}}_0,$$

где $\Phi^{\rm T}=\lambda_1\vec{\tau}\vec{\tau}_0+\lambda_2\vec{e}_{\phi}\vec{e}_{\phi}+\lambda_3\vec{n}\,\vec{n}_0$ — транспонированный тензор.

Тензор деформаций Коши – Грина по определению принимает вид

$$\underline{\varepsilon} = \frac{1}{2} \left(\vec{G} - \vec{E} \right) = \frac{1}{2} \left(\lambda_1^2 - 1 \right) \vec{\tau}_0 \vec{\tau}_0 + \frac{1}{2} \left(\lambda_2^2 - 1 \right) \vec{e}_\phi \vec{e}_\phi + \frac{1}{2} \left(\lambda_3^2 - 1 \right) \vec{n}_0 \vec{n}_0 \; .$$

Тензор деформаций Фингера

$$F = \frac{1}{2} \left(1 - \lambda_1^2 \right) \vec{\tau} \, \vec{\tau} + \frac{1}{2} \left(1 - \lambda_2^2 \right) \vec{e}_{\phi} \vec{e}_{\phi} + \frac{1}{2} \left(1 - \lambda_3^2 \right) \vec{n} \, \vec{n} \,. \tag{1.18}$$

«Левая» (инвариантная относительно вращения) мера искажения принимает вид

$$U = G^{\frac{1}{2}} = \lambda_1 \vec{\tau}_0 \vec{\tau}_0 + \lambda_2 \vec{e}_{\omega} \vec{e}_{\omega} + \lambda_3 \vec{n}_0 \vec{n}_0.$$
 (1.19)

Из (1.19) получаем «левый» тензор Генки

$$\vec{\Gamma} = \ln \vec{U} = \ln \lambda_1 \, \vec{\tau}_0 \vec{\tau}_0 + \ln \lambda_2 \, \vec{e}_\phi \vec{e}_\phi + \ln \lambda_3 \, \vec{n}_0 \vec{n}_0 \, .$$

Найдем тензор поворота R, используя его определение [18]:

$$\underline{R} = \underline{U}^{-1} \cdot \underline{\Phi} .$$

Из (1.17) и (1.19) получим

$$\tilde{R} = \left(\lambda_1^{-1} \vec{\tau}_0 \vec{\tau}_0 + \lambda_2^{-1} \vec{e}_{\omega} \vec{e}_{\omega} + \lambda_3^{-1} \vec{n}_0 \vec{n}_0\right) \cdot \left(\lambda_1 \vec{\tau}_0 \vec{\tau} + \lambda_2 \vec{e}_{\omega} \vec{e}_{\omega} + \lambda_3 \vec{n}_0 \vec{n}\right) = \vec{\tau}_0 \vec{\tau} + \vec{e}_{\omega} \vec{e}_{\omega} + \vec{n}_0 \vec{n} \ .$$

Найдем компоненты $\, \vec{R} \,$ в локальной системе $\, \vec{\tau}_0 \, , \, \vec{e}_{_{\! O}} \, , \, \vec{n}_0 \, ; \,$

$$R_{\tau_0\tau_0} = \vec{\tau}_0 \cdot \mathbf{R} \cdot \vec{\tau}_0 = \vec{\tau} \cdot \vec{\tau}_0 = \cos(\theta_0 - \theta); \ R_{\tau_0n_0} = \vec{\tau}_0 \cdot \mathbf{R} \cdot \vec{n}_0 = \vec{\tau} \cdot \vec{n}_0 = -\sin(\theta - \theta_0);$$

$$R_{n_0\tau_0} = \vec{n}_0 \cdot \vec{R} \cdot \vec{\tau}_0 = \vec{n} \cdot \vec{\tau}_0 = \sin(\theta - \theta_0); \ R_{n_0n_0} = \vec{n}_0 \cdot \vec{R} \cdot \vec{n}_0 = \vec{n} \cdot \vec{n}_0 = \cos(\theta - \theta_0).$$

Таким образом, матрица тензора \vec{R} в локальном базисе определяется углом поворота $\gamma = \theta - \theta_0$. Здесь θ — угол между \vec{n} и \vec{e}_z .

Угол θ определяется с учетом (1.14) и (1.15) по формулам

$$\cos \theta = \vec{n} \cdot \vec{e}_z = \frac{r'}{\lambda_1 \rho_0} = \frac{r_0 \lambda_2'}{\rho_0 \lambda_1};$$

$$\sin \theta = \vec{n} \cdot \vec{e}_r = -\frac{z'}{\lambda_1 \rho_0}.$$
(1.20)

2. Напряженное состояние и условия равновесия тороидальной оболочки

В теории нелинейной упругости используются различные тензорные меры напряженного состояния и соответствующие уравнения равновесия. В частности, рассмотрим представление напряженного состояния в тороидальной оболочке тензором истинных напряжений — S. Пренебрегая сдвиговыми напряжениями, получим данное разложение S по материальному базису

$$S = S^{11} \vec{\mathbf{a}}_1 \vec{\mathbf{a}}_1 + S^{22} \vec{\mathbf{a}}_2 \vec{\mathbf{a}}_2 + S^{33} \vec{\mathbf{a}}_3 \vec{\mathbf{a}}_3$$

Заменяя векторы $\vec{\mathbf{5}}_i$ по формулам (1.16), представим тензор напряжений разложением по текущему локальному базису:

$$S = \sigma_{11}\vec{\tau}\vec{\tau} + \sigma_{22}\vec{e}_{\omega}\vec{e}_{\omega} + \sigma_{33}\vec{n}\vec{n}, \qquad (2.1)$$

где
$$\sigma_{11}=\lambda_1^2\rho_0^2s^{11}$$
, $\sigma_{22}=\left(\lambda_2r_0\right)^2s^{22}$, $\sigma_{33}=\lambda_3^2s^{33}$.

Распределение компонент тензора напряжений по начальным координатам $x^1 = \theta_0$, $x^2 = \varphi$, $x^3 = \xi_0$ должно удовлетворять уравнениям равновесия. Используем смешанную (Лангранжево-Эйлерову) форму условий равновесия, которая имеет следующий вид в отсутствие массовых сил [19]:

$$\vec{\mathfrak{z}}^i \cdot \frac{\partial \, \underline{S}}{\partial \, x^i} = \vec{0} \ . \tag{2.2}$$

Векторы контравариантного материального базиса — $\vec{\mathfrak{z}}^i$ определяем из (1.10), используя условие

$$\vec{\mathbf{y}}^i \cdot \vec{\mathbf{y}}_i = \delta^i_i$$
.

В результате получим

$$\vec{3}^{1} = \frac{1}{\lambda_{1}\rho_{0}} \vec{\tau} \; ; \; \vec{3}^{2} = \frac{1}{\lambda_{2}r_{0}} \vec{e}_{\varphi} \; ; \; \vec{3}^{3} = \frac{1}{\lambda_{3}} \vec{n} \; . \tag{2.3}$$

Полагаем оболочку тонкой: $\frac{h_0}{\rho_0} \ll 1$, а напряженное состояние однородным по

толщине. При этом напряжением σ_{33} по сравнению с σ_{11} и σ_{22} пренебрегаем. В условиях равновесия производную от σ_{33} по ξ_0 учитываем. В результате условие равновесия (2.2) для тензора напряжений (2.1) примет следующий вид:

$$\vec{3}^{1} \cdot \frac{\partial \left(\sigma_{11}\vec{\tau}\,\vec{\tau} + \sigma_{22}\vec{e}_{\varphi}\vec{e}_{\varphi}\right)}{\partial \theta_{0}} + \vec{3}^{2} \cdot \frac{\partial \left(\sigma_{11}\vec{\tau}\,\vec{\tau} + \sigma_{22}\vec{e}_{\varphi}\vec{e}_{\varphi}\right)}{\partial \varphi} + \vec{3}^{3} \cdot \frac{\partial \sigma_{33}\vec{n}\,\vec{n}}{\partial \xi_{0}} = \vec{0}. \tag{2.4}$$

Найдем производные по координате θ_0 .

Из рис. 1 следует, что

$$\vec{n} = \sin \theta \vec{e}_r + \cos \theta \vec{e}_z;$$

$$\vec{\tau} = \cos \theta \vec{e}_r - \sin \theta \vec{e}_z.$$
(2.5)

В результате получим

$$\frac{\partial \vec{\tau}}{\partial \theta_0} = -\left(\sin\theta \,\vec{e}_r + \cos\theta \,\vec{e}_z\right) \theta' \equiv -\theta' \vec{n} \,, \tag{2.6}$$

где $\theta' = \frac{d\theta}{d\theta_0}$.

Найдем θ' . Дифференцируя $\cos\theta$, запишем

$$(\cos\theta)' = -\sin\theta \frac{d\theta}{d\theta_0}.$$

Выражая $\cos \theta$ и $\sin \theta$ по формулам (1.20), имеем

$$\theta' = \frac{d\theta}{d\theta_0} = -\frac{\lambda_1}{z'} \left(\frac{r'}{\lambda_1}\right)' = -\frac{\lambda_1 r_0}{z'} \left(\frac{\lambda_2'}{\lambda_1}\right)'. \tag{2.7}$$

Из определения цилиндрической системы следует, что

$$\frac{\partial \vec{e}_{\varphi}}{\partial \theta_0} = \vec{0} . \tag{2.8}$$

Используя (1.14), найдем производные по ф:

$$\frac{\partial \vec{r}}{\partial \varphi} = \frac{r'}{\lambda_1 \rho_0} \frac{\partial \vec{e}_r}{\partial \varphi} = \cos \theta \vec{e}_{\varphi}; \qquad (2.9)$$

$$\frac{\partial \vec{e}_{\varphi}}{\partial \omega} = -\vec{e}_r = -\cos\theta \,\vec{\tau} - \sin\theta \,\vec{n} \,. \tag{2.10}$$

Преобразуем слагаемые в уравнении (2.4), используя (2.3), (2.5) – (2.10):

$$\begin{split} \vec{\vartheta}^1 \cdot \frac{\partial \, \sigma_{11} \vec{\tau} \, \vec{\tau}}{\partial \, \theta_0} &= \frac{1}{\lambda_1 \rho_0} \, \vec{\tau} \cdot \left(\vec{\tau} \, \vec{\tau} \, \frac{\partial \, \sigma_{11}}{\partial \, \theta_0} + \sigma_{11} \, \frac{\partial \, \vec{\tau}}{\partial \, \theta_0} \, \vec{\tau} + \sigma_{11} \vec{\tau} \, \frac{\partial \, \vec{\tau}}{\partial \, \theta_0} \right) = \frac{1}{\lambda_1 \rho_0} \left(\frac{\partial \, \sigma_{11}}{\partial \, \theta_0} \vec{\tau} - \sigma_{11} \vec{n} \, \theta' \right); \\ \vec{\vartheta}^1 \cdot \frac{\partial \, \sigma_{22} \vec{e}_\phi \vec{e}_\phi}{\partial \, \theta_0} &= \vec{0} \, , \, \text{tak kak} \, \frac{\partial \, \vec{e}_\phi}{\partial \, \theta_0} = \vec{0} \, , \, \vec{\vartheta}^1 \cdot \vec{e}_\phi = 0 \, ; \\ \vec{\vartheta}^2 \cdot \frac{\partial \, \sigma_{11} \vec{\tau} \, \vec{\tau}}{\partial \, \phi} &= \frac{1}{\lambda_2 r_0} \vec{e}_\phi \cdot \sigma_{11} \frac{\partial \, \vec{\tau}}{\partial \, \phi} \, \vec{\tau} = \frac{1}{\lambda_2 r_0} \vec{e}_\phi \cdot \sigma_{11} \vec{e}_\phi \cos \theta = \frac{\cos \theta}{\lambda_2 r_0} \sigma_{11} \vec{\tau} \, ; \\ \vec{\vartheta}^2 \cdot \frac{\partial \, \sigma_{22} \vec{e}_\phi \vec{e}_\phi}{\partial \, \phi} &= \frac{1}{\lambda_2 r_0} \vec{e}_\phi \cdot \sigma_{22} \left(\frac{\partial \vec{e}_\phi}{\partial \, \phi} \vec{e}_\phi + \vec{e}_\phi \frac{\partial \vec{e}_\phi}{\partial \, \phi} \right) = \frac{1}{\lambda_2 r_0} \sigma_{22} \frac{\partial \vec{e}_\phi}{\partial \, \phi} = -\frac{1}{\lambda_2 r_0} \sigma_{22} \left(\cos \theta \, \vec{\tau} + \sin \theta \, \vec{n} \right). \end{split}$$

Складывая полученные слагаемые, получим

$$\left(\frac{1}{\lambda_1\rho_0}\frac{\partial\,\sigma_{11}}{\partial\,\theta_0} + \frac{\cos\theta}{\lambda_2r_0} \left(\sigma_{11} - \sigma_{22}\right)\right)\vec{\tau} + \left(-\frac{\theta'}{\lambda_1\rho_0}\sigma_{11} - \frac{\sin\theta}{\lambda_2r_0}\sigma_{22} + \frac{1}{\lambda_3}\frac{\partial\,\sigma_{33}}{\partial\,\xi_0}\right)\vec{n} = \vec{0}\;.$$

Приравнивая к нулю компоненты вектора в левой части данного выражения, с учетом (1.20) имеем следующую систему условий равновесия:

$$r\frac{\partial \sigma_{11}}{\partial \theta_0} + \frac{\partial r}{\partial \theta_0} (\sigma_{11} - \sigma_{22}) = 0; \qquad (2.11)$$

$$\lambda_3 \left(\theta' r \sigma_{11} + \lambda_1 \rho_0 \sin \theta \sigma_{22} \right) - \lambda_1 \rho_0 r \frac{\partial \sigma_{33}}{\partial \xi_0} = 0.$$
 (2.12)

Входящие в условия равновесия удлинения выразим через функции $r(\theta_0)$ и $\theta(\theta_0)$. Из (1.17) и (1.20) получим

$$\lambda_1 = \frac{1}{\rho_0} \frac{r'}{\cos \theta}; \ \lambda_2 = \frac{r}{r_0}. \tag{2.13}$$

Полагая материал несжимаемым, из условия несжимаемости [19] $\lambda_1\lambda_2\lambda_3=1$ находим удлинение λ_3 в виде

$$\lambda_3 = \rho_0 r_0 \cos \theta / r' r \ . \tag{2.14}$$

Таким образом, условия равновесия и кинематические характеристики выражаются через две функции $r(\theta_0)$ и $\theta(\theta_0)$.

3. Определяющие соотношения, замкнутая система уравнений

Для замыкания системы уравнений (2.11) — (2.14) необходимо определить связь между тензором истинных напряжений и соответствующей мерой деформации. В работе [20] показано, что для изотропных упругих материалов сопряженной с тензором истинных напряжений является «правая» мера искажения V, связанная с мерой Фингера V и тензором аффинором соотношением [19]

$$F = V^2 = \Phi^T \cdot \Phi$$
.

Используя представление аффинора (1.17), получим

$$\label{eq:V2} {{V}^{2}}=\lambda_{1}^{2}\vec{\tau}\vec{\tau}+\lambda_{2}^{2}\vec{e}_{\varphi}\vec{e}_{\varphi}+\lambda_{3}^{2}\vec{n}\,\vec{n}\;.$$

Отсюда находим правую меру

$$V = \lambda_1 \vec{\tau} \vec{\tau} + \lambda_2 \vec{e}_{\omega} \vec{e}_{\omega} + \lambda_3 \vec{n} \vec{n} .$$

Энергетически сопряженным с тензором о является «правый» тензор Генки

$$\label{eq:Hamiltonian} \begin{split} \tilde{H} &= \ln \tilde{V} = \ln \lambda_1 \vec{\tau} \vec{\tau} + \ln \lambda_2 \vec{e}_\phi \vec{e}_\phi + \ln \lambda_3 \vec{n} \, \vec{n} \end{split} \; .$$

По аналогии с законом Гука запишем определяющее соотношение для несжимаемого материала в следующем виде [19]:

$$\mathfrak{G} = 2G \ln V + \mathfrak{G}_0 \mathcal{E},$$
(3.1)

где G – упругий модуль; E – единичный тензор; $\sigma_0 = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$.

В координатной форме (3.1) при условии плоского наряженного состояния, когда $\sigma_{33}=0$, принимает вид

$$\begin{split} &\sigma_{11} = 2G\ln\lambda_1 + \frac{1}{3}(\sigma_{11} + \sigma_{22}), \\ &\sigma_{22} = 2G\ln\lambda_2 + \frac{1}{3}(\sigma_{11} + \sigma_{22}). \end{split}$$

Разрешая данную систему относительно σ_{11} и σ_{22} , получим

$$\sigma_{11} = 4G \ln \lambda_1 - 2G \ln \lambda_2 = 2G(2 \ln \lambda_1 - \ln \lambda_2);
\sigma_{22} = 2G(2 \ln \lambda_2 - \ln \lambda_1).$$
(3.2)

С целью явного введения внутреннего давления P запишем граничные условия. На внутренней поверхности тора, где $\vec{n}_0^- = -\vec{n}_0$, вектор напряжения имеет вид

$$\vec{P}^{\left(\vec{n}_{0}^{-}\right)} = P \, \vec{n}_{0} = \mathfrak{G}|_{\xi = -\frac{h_{0}}{2}} \cdot \vec{n}_{0}^{-} = -\sigma_{33}|_{\xi = -\frac{h_{0}}{2}} \, \vec{n}_{0} \, .$$

На внешней поверхности тора

$$\vec{P}^{\left(\vec{n}_{0}^{+}\right)} = \vec{0} = \sigma_{33}|_{\xi = \frac{h_{0}}{2}} \vec{n}_{0}.$$

Проинтегрируем уравнение (2.12) по координате ξ_0 от $-\frac{h_0}{2}$ до $\frac{h_0}{2}$. В результате данное уравнение примет следующий вид:

$$\lambda_3 h_0(\theta_0) (\theta' r \sigma_{11} + \lambda_1 \rho_0 \sin \theta \sigma_{22}) = \lambda_1 \rho_0 r P. \tag{3.3}$$

Уравнения (3.3), (2.11), условия (2.13), (2.14) с определяющими соотношениями (3.2) образуют замкнутую систему нелинейных обыкновенных дифференциальных уравнений относительно неизвестных функций $\sigma_{11}(\theta_0)$, $\sigma_{22}(\theta_0)$, $\theta(\theta_0)$, $r(\theta_0)$, $\lambda_1(\theta_0)$, $\lambda_3(\theta_0)$. Полагая $r = r_0\lambda_2$, приведем данную систему:

$$r_0 \lambda_2 \frac{\partial \hat{\sigma}_{11}}{\partial \theta_0} + \frac{\partial r_0 \lambda_2}{\partial \theta_0} (\hat{\sigma}_{11} - \hat{\sigma}_{22}) = 0 ; \qquad (3.4)$$

$$\lambda_3 h_0(\theta_0) (r_0 \lambda_2 \theta' \hat{\sigma}_{11} + \lambda_1 \rho_0 \sin \theta \hat{\sigma}_{22}) = \rho_0 r_0 \lambda_1 \lambda_2 \hat{P}; \qquad (3.5)$$

$$\hat{\sigma}_{11} = 2 \ln \lambda_1 - \ln \lambda_2 \; ; \; \hat{\sigma}_{22} = 2 \ln \lambda_2 - \ln \lambda_1 \; ; \qquad (3.6)$$

$$\lambda_1 = \frac{1}{\rho_0 \cos \theta} \frac{\partial r_0 \lambda_2}{\partial \theta_0} ; \ \lambda_3 = \rho_0 \cos \theta / \lambda_2 \frac{\partial r_0 \lambda_2}{\partial \theta_0} . \tag{3.7}$$

Здесь $\hat{\sigma}_{11} = \sigma_{11}/2G$, $\hat{\sigma}_{22} = \sigma_{22}/2G$, $\hat{P} = P/2G$ — безразмерные напряжения и внутреннее давление.

4. Оценка напряженно деформированного состояния оболочки.

Система уравнений (3.4) – (3.7) представляет сложную нелинейную систему из 6-ти уравнений. Точное аналитическое решение не может быть найдено. Для оценки напряженного и деформированного состояния используем метод последовательных приближений [17]. В начальном приближении линеаризуем систему

уравнений равновесия (3.4),(3.5). Без учета геометрической нелинейности полагаем, что в (3.4), (3.5) $\lambda_1 = \lambda_2 = \lambda_3 = 1$, $\theta = \theta_0$, $\theta' = 1$. В результате приходим к следующим уравнениям равновесия:

$$\frac{d}{d\theta_0} (r_0 \hat{\sigma}_{11}) - \rho_0 \cos \theta_0 \hat{\sigma}_{22} = 0 ; \qquad (4.1)$$

$$r_0 \hat{\sigma}_{11} + \rho_0 \sin \theta_0 \hat{\sigma}_{22} = \frac{\rho_0 r_0}{h_0} \hat{P}$$
 (4.2)

Домножим уравнение (4.1) на $\sin\theta_0$, а (4.2) на $\cos\theta_0$ и сложим. В результате получим

$$\sin \theta_0 \frac{d}{d\theta_0} (r_0 \hat{\sigma}_{11}) + \cos \theta_0 r_0 \hat{\sigma}_{11} = \frac{\rho_0 r_0}{h_0} \cos \theta_0 \hat{P} .$$

Преобразуя левую часть данного уравнения, приходим к выражению

$$\frac{d}{d\theta_0} \left[\sin \theta_0 \left(r_0 \hat{\sigma}_{11} \right) \right] = \frac{\rho_0 r_0}{h_0} \cos \theta_0 \hat{P} . \tag{4.3}$$

Подставляя значение $r_0 = a_0 + \rho_0 \sin \theta_0$ и интегрируя (4.3) по θ_0 от 0 до θ_0 , находим закон изменения $\sigma_{11}(\theta_0)$ в квадратурах:

$$\hat{\sigma}_{11} = \frac{\hat{P} \int_{0}^{\theta_0} \frac{\rho_0}{h_0} \cos \theta_0 (a_0 + \rho_0 \sin \theta_0) d\theta_0}{\sin \theta_0 (a_0 + \rho_0 \sin \theta_0)}.$$
 (4.4)

В случае постоянной толщины из (4.4) приходим к известному закону распределения мембранных усилий [21]. Подставляя (4.4) в (4.2), находим закон распределения окружных напряжений:

$$\hat{\sigma}_{22} = \left(\frac{\rho_0 \hat{P}}{h_0} - \hat{\sigma}_{11}\right) \frac{r_0}{\rho_0 \sin \theta_0}.$$
 (4.5)

Рассмотрим распределение напряжений при постоянной начальной толщине оболочки ($h_0 = const$). Интегрируя (4.4), получим закон изменения меридиональных напряжений

$$\hat{\sigma}_{11} = \frac{\rho_0}{h_0} \hat{P} \frac{a_0 + \frac{\rho_0}{2} \sin \theta_0}{a_0 + \rho_0 \sin \theta_0}.$$
 (4.6)

Из (4.5) и (4.6) находим закон изменения окружных напряжений

$$\hat{\sigma}_{22} = \frac{\rho_0}{h_0} \hat{P} \left(1 - \frac{a_0 + \frac{\rho_0}{2} \sin \theta_0}{a_0 + \rho_0 \sin \theta_0} \right) \frac{a_0 + \rho_0 \sin \theta_0}{\rho_0 \sin \theta_0} = \frac{\rho_0}{2h_0} \hat{P} . \tag{4.7}$$

Таким образом, окружные напряжения постоянны.

Определение кинематических характеристик в первом приближении

Используя определяющие соотношения (3.2), найдем выражения компонент тензора Генки через безразмерные компоненты тензора напряжений:

$$\ln \lambda_1 = \frac{1}{3} (\hat{\sigma}_{11} + 2\hat{\sigma}_{22}); \tag{4.8}$$

$$\ln \lambda_2 = \frac{1}{3} (\hat{\sigma}_{22} + 2\hat{\sigma}_{11}). \tag{4.9}$$

Из условия несжимаемости $\ln \lambda_1 + \ln \lambda_2 + \ln \lambda_3 = 0$ находим

$$\ln \lambda_3 = -(\hat{\sigma}_{11} + \hat{\sigma}_{22}).$$

Отметим, что использование известных форм нелинейных определяющих соотношений [20] не позволяет в простом виде получить обратные связи мер деформаций через компоненты напряжений.

Например, замена в определяющих соотношениях (3.2) тензора Генки на тензор Фингера (1.18), (3.2) приводит к законам

$$\begin{split} \hat{\sigma}_{11} = & \left(1 - \lambda_1^2\right) - \frac{1}{2} \left(1 - \lambda_2^2\right) = \frac{1}{2} - \lambda_1^2 + \frac{1}{2} \lambda_2^2; \\ \hat{\sigma}_{22} = & \frac{1}{2} - \lambda_2^2 + \frac{1}{2} \lambda_1^2. \end{split}$$

Из данных законов можно определить квадраты удлинений λ_1^2 , λ_2^2 через компоненты напряжений. Однако использование условия несжимаемости $\lambda_1\lambda_2\lambda_3=1$ для нахождения λ_3 приводит к неоднозначности выбора корней из компонент напряжений.

Результаты расчета напряженного состояния в начальном приближении

Введем безразмерный параметр $\hat{\rho}_0 = \frac{\rho_0}{a_0}$. Тогда выражения (4.6), (4.7) преобразуются к виду

$$\hat{\sigma}_{11} = \hat{P} \frac{\rho_0 \left(1 + \frac{\hat{\rho}_0}{2} \sin \theta_0 \right)}{h_0 \left(1 + \hat{\rho}_0 \sin \theta_0 \right)}; \ \hat{\sigma}_{22} = \frac{\rho_0}{2h_0} \hat{P}. \tag{4.10}$$

На рис. 2 приведены законы распределения напряжений $\hat{\sigma}_{11}(\theta_0)$, $\hat{\sigma}_{22}(\theta_0)$, соответствующие верхней половине тора, когда

$$-\frac{\pi}{2} \le \theta_0 \le \frac{\pi}{2} \, .$$

Данные графики соответствуют различным размерам тора: $\hat{\rho}_0$, ρ_0 , h_0 .

Распределения логарифмических удлинений (4.8), (4.9), соответствующие законам распределения напряжений (4.10), приведены на рис. 3.

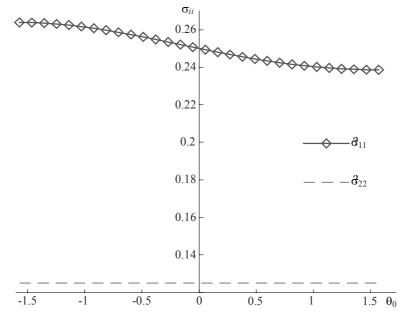


Рис. 2. Компоненты тензора напряжений $\hat{\sigma}_{11}(\theta_0)$, $\hat{\sigma}_{22}(\theta_0)$ **Fig. 2.** Stress tensor components $\hat{\sigma}_{11}(\theta_0)$, $\hat{\sigma}_{22}(\theta_0)$

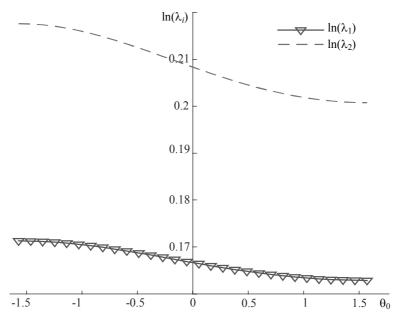


Рис. 3. Логарифмы удлинений материальных волокон $\ln \lambda_1$, $\ln \lambda_2$ **Fig. 3.** Logarithms of the extensions of material fibers $\ln \lambda_1$, $\ln \lambda_2$

ЛИТЕРАТУРА

- Marchuk M.V., Tuchapskii R.I. Dynamics of geometrically nonlinear elastic nonthin anisotropic shells of variable thickness // International Applied Mechanics. 2017. V. 53. P. 655–667. DOI: 10.1007/s10778-018-0848-4.
- Cowley J., Mulholland A., Gachagan A.A. Nonlinear elasticity approach to modelling the collapse of a shelled microbubble // IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications). 2017. V. 82. P. 781–801. DOI: 10.1093/imamat/hxx013.
- 3. Долгих Д.В., Киселев В.В. Управление деформированием круговой цилиндрической оболочки // Известия Российской академии наук. Механика твердого тела. 2019. № 6. С. 54–67. DOI: 10.1134/S0572329919060072.
- 4. *Киселев В.В.*, *Долгих Д.В*. Влияние жестких связей на изменение формы гидростатически сжатой оболочки // Прикладная механика и техническая физика. 2017. № 3. С. 178–189. DOI: 10.15372/PMTF20170318.
- Жгутов В.М. Нелинейные уравнения равновесия ребристых оболочек с учетом различных свойств материала // Инженерно-строительный журнал. 2010. № 2 (12). С. 36–44. DOI: 10.18720/MCE.12.8.
- 6. *Махутов Н.А.*, *Щеглов Б.А.*, *Евдокимов А.П.* Нелинейная упругость торообразных резинокордных оболочек в режиме статического нагружения // Проблемы машиностроения и надежности машин. 2006. № 2. С 27–36.
- 7. Верещака С.М., Жигилий Д.А., Караш И.Т., Дейнека А.В. Конструкционная прочность торообразных баллонов высокого давления // Вестник СевНТУ: сборник научных трудов. Серия: «Механика, энергетика, экология». 2012. Вып. 133. С. 329–334.
- 8. *Фурсаев С.А.* Деформирование торообразных оболочек с учетом режима сверхпластичности // Известия Тульского государственного университета. Естественные науки. 2009. Вып. 1. С. 71–82.
- 9. *Бакусов П.А.*, *Семенов А.А.* Устойчивость сегментов тороидальных оболочек при изменении угла отклонения от вертикальной оси // Вестник Пермского национального исследовательского политехнического университета. Механика. 2017. № 3. С. 17–36. DOI: 10.15593/perm.mech/2017.3.02.
- Jiammeepreecha W., Chucheepsakul S. Nonlinear static analysis of an underwater elastic semi-toroidal shell // Thin-Walled Structures. 2017. V. 116. P. 12–18. DOI: 10.1016/ j.tws.2017.03.001.
- 11. Chernyshenko I.S., Maksimyuk V.A. On the stress-strain state of toroidal shells of elliptical cross section formed from nonlinear elastic orthotropic materials // International Applied Mechanics. 2000. V. 36. No.1. P. 90–97. DOI: 10.1007/BF02681963.
- 12. *Буяков И.А.*, *Лысенко А.В.* Особенность осесимметричного деформирования надувной торообразной оболочки при воздействии внешнего давления // Космонавтика и ракетостроение. 2014. № 6 (79). С. 56–58.
- 13. Zhu Y., Chen B., Zhao B., Zhao X., Tang W., Wang X. Buckling characteristics of externally pressurised toroidal shell // Ships and Offshore Structures. 2019. DOI: 10.1080/17445302. 2019.1682920.
- 14. *Евдокимов А.П.* Нелинейная упругость торообразных резинокордных оболочек соединительных муфт бурового оборудования // Оборудование и технологии для нефтегазового комплекса. 2012. № 1. С. 31–36.
- 15. Сабиров Р.А. К расчету деформирования мягкой тороидальной оболочки // Решетневские чтения: материалы XXI Междунар. науч.-практ. конф., посвящ. памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева (8–11 нояб. 2017, г. Красноярск): в 2 ч. / под общ. ред. Ю.Ю. Логинова. 2017. Т. 2. С. 25–27.
- Jiammeepreecha W., Suebsuk. J., Chucheepsakul S. Nonlinear static analysis of liquidcontainment toroidal shell under hydrostatic pressure // Journal of Structural Engineering. 2020. V. 146. No. 1. DOI: 10.1061/(ASCE)ST.1943-541X.0002460.
- 17. Виленкин Н.Я. Метод последовательных приближений. М.: Наука, 1968. 108 с.
- 18. Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980. 512 с.

- 19. *Маркин А.А.*, *Соколова М.Ю*. Термомеханика упругопластического деформирования. М.: Физматлит, 2013. 320 с.
- Маркин А.А., Христич Д.В. Нелинейная теория упругости: учеб. пособие: 2-е изд., доп. Тула: Изд-во ТулГУ. 2007. 92 с.
- 21. *Биргер И.А.*, *Пановко Я.Г.* Прочность, устойчивость, колебания. Справочник: в 3 т. Т. 1. М.: Машиностроение, 1968. 831 с.

Статья поступила 08.07.2020

Kozlov V.V., Markin A.A. (2021) FINITE DEFORMATIONS OF A TOROIDAL SHELL. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika* [Tomsk State University Journal of Mathematics and Mechanics]. 71. pp. 106–120

DOI 10.17223/19988621/71/9

Keywords: toroidal shell, nonlinear elasticity, constitutive relations, method of successive approximations.

The stress-strain state of a nonlinear elastic shell exposed to the internal pressure is considered. A surface of the shell is toroidal in shape in the initial state. The Lagrangian coordinates of the shell are assigned to a cylindrical system. The kinematic characteristics of the process are shown: a law of the motion of points, vectors of a material basis, a strain affinor and its polar decomposition, the Cauchy-Green strain measure and tensor, the Finger measure, and the "left" and the "right" Hencky strain tensors. Neglecting the shear components of the stress tensor, a constitutive relation is obtained as a quasilinear relation between true stress tensor and the Hencky corotation tensor. A system of equilibrium equations is presented in terms of physical components of the true stress tensor in the Lagrangian coordinates. Using the equilibrium equations and the incompressibility condition, a closed system of nonlinear ordinary differential equations is obtained to determine six unknown functions, depending on the angle indicating a position of the points along the cross-section in the initial state. The method of successive approximations is applied to estimate stress tensor components and to derive logarithms of the elongations of material fibers.

Financial support. The reported study was partially funded by the grant from the President of the Russian Federation according to the research project MD-1803.2019.1 (formulation of the problem statement) and by the grant of Russian Science Foundation according to the research project No. 19-71-10008 (evaluation of the shell stress-strain state).

Viktor V. KOZLOV (Candidate of Physics and Mathematics, Associate Professor, Tula State University, Tula, Russian Federation). E-mail: vvkozlovtsu@mail.ru

Aleksey A. MARKIN (Doctor of Physics and Mathematics, Professor, Tula State University, Tula, Russian Federation). E-mail: markin-nikram@yandex.ru

REFERENCES

- Marchuk M.V., Tuchapskii R.I. (2017) Dynamics of geometrically nonlinear elastic nonthin anisotropic shells of variable thickness. *International Applied Mechanics*. 53. pp. 655–667. DOI: 10.1007/s10778-018-0848-4.
- 2. Cowley J., Mulholland A., Gachagan A.A. (2017) Nonlinear elasticity approach to modelling the collapse of a shelled microbubble. *IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications*). 82. pp. 781–801. DOI: 10.1093/imamat/hxx013.
- 3. Dolgikh D.V., Kiselev V.V. (2019) Control of the deformation of a circular cylindrical shell. *Mechanics of Solids*. 54. pp. 1171–1181. DOI: 10.3103/S0025654419080077.
- Kiselev V.V., Dolgikh D.V. (2017) Influence of rigid constraints on the deformation of a hydrostatically compressed shell. *Journal of Applied Mechanics and Technical Physics*. 58. pp. 529–538. DOI: 10.1134/S002189441703018X.

- Zhgutov V.M. (2010) Nelineynye uravneniya ravnovesiya rebristykh obolochek c uchetom razlichnykh svoystv materiala [Nonlinear equilibrium equations for ribbed shells with consideration of various material properties]. *Inzhenerno-stroitel'nyy zhurnal – Magazine of Civil Engineering*. 2(12). pp. 36–44. DOI: 10.18720/MCE.12.8.
- Makhutov N.A., Shcheglov B.A., Evdokimov A.P. (2006) Nelineynaya uprugost' toroobraznykh rezinokordnykh obolochek v rezhime staticheskogo nagruzheniya [Nonlinear elasticity of toroidal rubber-cord casings under static loading mode]. *Problemy mashinostroeniya* i nadezhnosti mashin – Journal of Machinery Manufacture and Reliability. 2. pp. 27–36.
- Vereshchaka S.M., Zhigiliy D.A., Karash I.T., Deyneka A.V. (2012) Konstruktsionnaya prochnost' toroobraznykh ballonov vysokogo davleniya [Structural strength of toroidal highpressure cylinders]. Vestnik SevNTU: sbornik nauchnykh trudov. Seriya: «Mekhanika, energetika, ekologiya». 133. pp. 329–334.
- 8. Fursaev S.A. (2009) Deformirovanie toroobraznykh obolochek s uchetom rezhima sverkhplastichnosti [Deformation of similar to a ring shells in view of a mode of superplasticity]. *Izvestiya Tul'skogo gosudarstvennogo universiteta. Estestvennye nauki Izvestiya Tula State University. Natural sciences.* 1. pp. 71–82.
- 9. Bakusov P.A., Semenov A.A. (2017) Ustoychivost' segmentov toroidal'nykh obolochek pri izmenenii ugla otkloneniya ot vertikal'noy osi [Stability of toroidal shell segments at variation of a deflection angle]. *Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika PNRPU Mechanics Bulletin.* 3. pp. 17–36. DOI: 10.15593/perm.mech/2017.3.02.
- 10. Jiammeepreecha W., Chucheepsakul S. (2017) Nonlinear static analysis of an underwater elastic semi-toroidal shell. *Thin-Walled Structures*. 116. pp. 12–18. DOI: 10.1016/j.tws. 2017.03.001.
- 11. Chernyshenko I.S., Maksimyuk V.A. (2000) On the stress-strain state of toroidal shells of elliptical cross section formed from nonlinear elastic orthotropic materials. *International Applied Mechanics*. 36(1). pp. 90–97. DOI: 10.1007/BF02681963.
- 12. Buyakov I.A., Lysenko A.V. (2014) Osobennost' osesimmetrichnogo deformirovaniya naduvnoy toroobraznoy obolochki pri vozdeystvii vneshnego davleniya [Feature of an axisymmetric straining inflatable toroidal shell when exposed to an external pressure]. *Kosmonavtika i raketostroenie*. 6(79). pp. 56–58.
- Zhu Y., Chen B., Zhao B., Zhao X., Tang W., Wang X. (2019) Buckling characteristics of externally pressurised toroidal shell. *Ships and Offshore Structures*. DOI: 10.1080/17445302. 2019.1682920.
- 14. Evdokimov A.P. (2012) Nelineynaya uprugost' toroobraznykh rezinokordnykh obolochek soedinitel'nykh muft burovogo oborudovaniya [Nonlinear elasticity of toroidal rubber-cord shells of drilling equipment couplings]. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. 1. pp. 31–36.
- 15. Sabirov R.A. (2017) K raschetu deformirovaniya myagkoy toroidal'noy obolochki [To the calculations of flexible toroidal shell deformation]. Reshetnevskie chteniya: materialy XXI Mezhdunarodnoy naucho-prakticheskoy konferentsii, posvyashchennoy pamyati general'nogo konstruktora raketno-kosmicheskikh sistem akademika M.F. Reshetneva. 2. pp. 25–27.
- Jiammeepreecha W., Suebsuk J., Chucheepsakul S. (2020) Nonlinear static analysis of liquidcontainment toroidal shell under hydrostatic pressure. *Journal of Structural Engineering*. 146(1). DOI: 10.1061/(ASCE)ST.1943-541X.0002460.
- Vilenkin N.Ya. (1968) Metod posledovatel'nykh priblizheniy [Method of successive approximations]. Moscow: Nauka.
- 18. Lurie A.I. (1990) Nonlinear Theory of Elasticity. Amsterdam: North-Holland.
- 19. Markin A.A., Sokolova M.Yu. (2013) *Termomekhanika uprugoplasticheskogo deformirovaniya* [Thermal mechanics of elastoplastic deformation]. Moscow: Fizmatlit.
- 20. Markin A.A., Khristich D.V. (2007) *Nelineynaya teoriya uprugosti: uchebnoe posobie* [Nonlinear theory of elasticity: tutorial]. Tula: TulGU.
- 21. Birger I.A., Panovko Ya.G. (1968) *Prochnost'*, *ustoychivost'*, *kolebaniya*. T. 1. [Strength, buckling, vibrations. Vol. 1.]. Moscow: Mashinostroenie.

Received: July 8, 2020