УДК 538.911:548.4:620.186.8:620.172.2

DOI: 10.17223/00213411/64/8/74

 \mathcal{A} .А. ОСИПОВ^{1,2}, И.В. СМИРНОВ^{1,2}, К.В. ГРИНЯЕВ^{1,2}, А.Д. КОРОТАЕВ^{1,2}, Ю.П. ПИНЖИН^{1,2}, И.А. ДИТЕНБЕРГ^{1,2}, М.А. КОРЧАГИН³, М.А. ЕСИКОВ⁴, В.И. МАЛИ⁴

ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ НА МИКРОСТРУКТУРУ, МЕХАНИЧЕСКИЕ СВОЙСТВА И ОСОБЕННОСТИ РАЗРУШЕНИЯ ОБРАЗЦОВ Ni₃AI, СИНТЕЗИРУЕМЫХ МЕТОДОМ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ *

Проведено сравнительное исследование параметров микроструктуры и характеристик механических свойств консолидированных образцов Ni₃Al, полученных методом искрового плазменного спекания после предварительной механической активации малой продолжительности и перемешивания в ступке. Установлено, что размер зерен материала с предварительной механической активацией в несколько раз меньше, по сравнению со спеканием после перемешивания в ступке. Эта особенность проявляется в различиях значений микротвердости и кратковременной прочности. Выявлено влияние температуры отжигов на параметры структуры и уровень механических свойств образцов Ni₃Al в зависимости от предварительной обработки. Предполагается, что формирование после механической активации более высокодефектного структурного состояния, характеризуемого мелким зерном в сочетании с повышенным уровнем микроискажений, предопределяет прочностные свойства материала как после искрового плазменного спекания, так и после деформационного и термического воздействия.

Ключевые слова: система никель – алюминий, интерметаллид Ni_3Al , механическая активация, искровое плазменное спекание, структура, механические свойства.

Введение

Метод искрового плазменного спекания (ИПС) позволяет не только получать консолидированные образцы из различных порошковых систем, но и обеспечивает возможность синтеза соединений [1–6]. Сокращение времени спекания при снижении температур синтеза, по сравнению с традиционными высокотемпературными методами, в частности самораспространяющимся высокотемпературным синтезом (СВС), существенно уменьшает производственные затраты. Кроме того, возможность непосредственного управления процессом путем вариации давления, скорости нагрева, температуры и продолжительности синтеза расширяют применение данного метода в области фундаментальных исследований. В частности, это важно при синтезе интерметаллидных соединений, так как литье, вакуумная дуговая плавка и индукционное плавление часто характеризуются формированием неоднородного структурно-фазового состояния, оказывающего отрицательное влияние на механические свойства [7–9].

На сегодняшний день одним из актуальных вопросов данного направления является изучение влияния предварительной обработки на параметры структурно-фазового состояния и соответствующие характеристики физико-механических свойств, получаемых после ИПС материалов.

В настоящей работе проведено сравнительное исследование параметров микроструктуры и характеристик механических свойств образцов Ni_3Al , полученных методом ИПС после предварительной механической активации (MA) малой продолжительности и перемешивания в ступке.

Материалы и методика исследования

Смесь порошков 3Ni (99.85%, марки ПНК 1Л5) — Al (98%, марки ПА-4) была подвергнута МА продолжительностью 1 мин в энергонапряженных планетарных шаровых мельницах АГО-2 с водяным охлаждением. Объем каждого из двух стальных барабанов мельницы — $160 \, \text{cm}^3$. Диаметр шаров — 8 мм, масса шаров в каждом барабане — $200 \, \text{г}$, масса образца — $10 \, \text{г}$. Центробежное ускорение шаров составляло $400 \, \text{m/c}^2$ ($40 \, \text{g}$). Для предотвращения окисления обработку и выгрузку образцов осуществляли в атмосфере аргона. Продолжительность перемешивания в ступке порошковой смеси $3 \, \text{Ni}$ —Al составляла $5 \, \text{мин}$.

^{*} Механическая активация порошковой смеси и искровое плазменное спекание проведены в рамках госзадания ИХТТМ СО РАН, тема 0237-2021-0002. Термообработки и определение механических характеристик выполнены в рамках гранта РФФИ № 20-32-90094 аспиранты. Структурные исследования проведены в рамках госзадания ИФПМ СО РАН, тема FWRW-2021-0008.

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725