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The purpose of this paper is to provide a comprehensive security analysis for the
parameter selection process, which involves the computational cost of the information
set decoding algorithm using the parameters of subfield subcodes of 1-point Hermitian
codes.
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1. Introduction
Recently, there has been a big amount of research addressed to quantum computers

that use quantum mechanical techniques to solve hard computational problems in
mathematics [1]. The existence of these powerful machines threaten many of the public-
key cryptosystem that are widely in use [2]. McEliece [3] introduced the first code-based
public-key cryptosystem in 1978. The crucial issues in cryptography today is to reduce the
key size and improve the security level of the McEliece cryptosystem, which is a promising
cryptographic scheme for the post-quantum era [4]. Error correcting codes, used in code-
based cryptographic protocols, must have efficient decoding algorithms. A rich class of such
codes is the family algebraic-geometric (AG) codes, their subcodes and subfield subcodes.
This includes the generalized Reed — Solomon codes, the alternant codes, the binary Goppa
codes and BCH codes. See [5] for a survey on the decoding of AG codes.

The authors of [6 – 8] provided polynomial-time attacks against the McEliece
cryptosystem that relies either on AG codes or on their subcodes. In general, evaluation
codes do not behave like random codes which demonstrate the quite range of attacks
proposed against the McEliece cryptosystem based on AG codes. The approach given
in [6, 8] is inspired by the so-called filtration attacks that rely on computing the Schur
product that make AG codes distinguishable form random ones. Wieschebrink [9] used
this observation to provide an attack against McEliece scheme based on subcodes of GRS
codes [10]. Many attacks have been founded on this argument, and have employed a
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funding scheme.



Прикладная теория кодирования и графов 169

combination of powerful techniques such as the filtration method, an error-correcting pair
(ECP) or an error-correcting array (ECA), that lead to a key recovery attack or a blind
reconstruction of a decoding algorithm [6, 8, 11]. These vulnerabilities are based on two
operations: Schur product and s-closure. In some cases, the Schur filtration method can
expand the latter to develop an efficient decoding algorithm.

The purpose of this paper is to provide a comprehensive security analysis for the
parameter selection process, which involves the computational cost of the information set
decoding (ISD) algorithm using Hermitian subfield subcode parameters. Our approach
focuses on the optimal parameters that improve the key size for a given security level.
Furthermore, due to practical considerations, the key size of several parameter selections
is compared to that of the classical McEliece cryptosystem submitted to NIST [4] for the
same security level. Besides, we identify the Hermitian subfield subcodes parameters that
achieve a Schur square dimension roughly equal to that of random codes. This technique
is employed in the so-called distinguisher attack, that allows the attacker to determine the
Schur square dimension of the code used as a public key.

2. Preliminaries
Let q be a prime power. A q-ary linear code of length n is a linear subspace C 6 Fnq .

The dimension of C is denoted by k, C is usually given by its n× k generator matrix G, or
its n× (n− k) parity check matrix H:

C = {Gx : x ∈ Fkq} = {y ∈ Fnq : HTy = 0}.

The minimal distance of C is d(C) = min{wt(x) : x ∈ C \ {0}}, where wt(x) denotes the
Hamming weight of the vector x. If 2t < d(C), then for each y ∈ Fnq , there is at most
one pair x, e ∈ Fnq of vectors such that x ∈ C, wt(e) 6 t and y = x + e. Define the map
DC,t : Fnq → C ∪ {∗} by y 7→ x if the decomposition y = x+ e exists, and y 7→ ∗ otherwise.
We call DC,t a nearest neighbor decoding of C, correcting up to t errors. In general, known
nearest neighbor decoding algorithms have exponential time complexity in the size of the
input G, t, y. The seminal result by Berlekamp, McEliece and van Tilborg [12] shows that
the decoding problem is NP-complete even for the binary case q = 2. The simplest general
decoding technique is called information set decoding (ISD), with goes back to an old
algorithm of Prange [13]. This algorithm has time complexity

CPrange(n, k, t) =

(
n

t

)/(n− k
t

)
CGauss(n, k, q),

where CGauss(n, k, q) is the time complexity of the Gauss — Jordan elimination of a k×n
matrix over Fq. There are many improvements of Prange’s algorithms, but all known
variants have the same asymptotic behavior, see [14] and the references therein.

Let us fix the parameters n, k, t and q. The McEliece cryptographic scheme [3], or in
general code-based cryptosystems has a [n, k, t]q linear code C as public key, and an efficient
decoding algorithm DC,t as private key. Usually, C is given by a generator matrix

G =

[
Ik
G0

]
in systematic form, that is, the key size is

k(n− k)dlog2(q)e.

The plain text message m ∈ Fkq is encrypted to c = Gm + e ∈ Fnq , where e is a random
element of weight t in Fnq . The security of the scheme relies on two facts:
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1) To prevent a message recovery attack, the parameters n, k, t and q must be chosen
such that the time complexity of ISD exceeds a given level L of security. This level
is usually measured in bits, and corresponds to the time complexity of breaking
an L-bits symmetric-key block cipher, like AES. Since it is not the purpose of this
paper to give a detailed cryptanalysis of symmetric-key block ciphers, we interpret
this condition as (

n

t

)/(n− k
t

)
> 2L.

2) To prevent a key recovery attack, it should not be possible to give an efficient
decoding algorithm for C. At this point, we not only assume the knowledge of G,
but also the technique that was used to construct C from a given family of codes.
In the classic McEliece proposal, G = PG1S, where G1 is the generator matrix of
the binary Goppa code Γ(L, g). Here, g = g(X) is a polynomial over Fq with no
repeated roots, L is an ordered n-tuple of distinct elements of Fq that are no roots
of g, P is a random n× n permutation matrix, and S is a random k × k invertible
matrix; L, g, P, S are parts of the private key; they are supposed to be kept secret
for a long period of time.

The second requirement implies that the public key C must be indistinguishable from
a random subspace of Fnq . In general, distinguishing attacks do not necessarily lead to
message or key recovery attacks. However, often they do, and cryptosystems must resist to
distinguishing attacks.

3. The Schur product distinguisher
We briefly introduce some notions on attack techniques that allow us to describe some

important results stated in [6].
Definition 1. Given two elements a = (a1, . . . , an) and b = (b1, . . . , bn) in Fnq , the

Schur product is the component-wise

a ∗ b = (a1b1, . . . , anbn)

product on Fnq . For two linear subspaces A,B ⊆ Fnq , their Schur product is the linear
subspace

A ∗B = SpanFq{a ∗ b : a ∈ A and b ∈ B}.

If B = A, then A ∗ A is denoted as A∗2, and we define A∗t by induction for any positive
integer t.

One of the main results in [15] is that when the length n is such that n > k(k + 1)/2,
the dimension of the square of the random code C is exactly k(k + 1)/2, with probability
tending to 1 as n − k(k + 1)/2 approaches infinity. More precisely, we define F(n, k) as
the family of linear codes of length n and dimension k. Let n : N −→ N be such that
n(k) > k(k + 1)/2. Then there exits a constant γ ∈ R such that, for all large enough k,

Pr

(
dimC ∗ C =

k(k + 1)

2

)
> 1− 2γ(n(k)−k(k+1)/2),

where C is chosen uniformly at random from F(n(k), k). This observation serves as a useful
distinguisher between random linear subspaces and those with a rich algebraic structure.

Definition 2. Let C be an [n, k]q linear code. We say that C is s-good, if

dim(C ∗ C) = dim(C⊥ ∗ C⊥) = n.
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4. Algebraic-geometric codes: constructions and parameters
Algebraic-geometric codes are linear error-correcting codes constructed from algebraic

curves over finite fields. They are defined by evaluating functions or by using residues
of differentials. Their parameters can be derived from well-known theorems of algebraic
geometry. Our notation and terminology on algebraic plane curves over finite fields, their
function fields, divisors and Riemann—Roch spaces are standard, see for instance [16].

Let X be an algebraic curve, i.e., an affine or projective variety of dimension one, which
is absolutely irreducible and nonsingular, and whose defining equations are (homogeneous)
polynomials with coefficients in Fq. Let g = g(X ) be the genus of X , Fq(X ) denotes the
function field of X . A divisor D of X is a formal sum D = n1P1 + . . . + nkPk, where
n1, . . . , nk ∈ Z and P1, . . . , Pk are places of Fq(X ). If n1 . . . , nk > 0, then D � 0. If D,E
are two divisors and D − E � 0, then D � E. For a non-zero function f in the function
field Fq(X ) and a place P , vP (f) stands for the order of f at P . If vP (f) > 0, then P is a
zero of f , while if vP (f) < 0, then P is a pole of f with multiplicity −vP (f). The principal
divisor of a non-zero function f is Div(f) =

∑
P

vP (f)P .

For a divisor D, the associated Riemann—Roch space L (D) is the vector space

L (D) = {f ∈ Fq(X ) \ {0} : Div(f) � −D} ∪ {0}.

The dimension `(D) of L (D) is given by the Riemann-Roch Theorem [16, Theorem 1.1.15]:

`(D) = `(W −D) + degD − g + 1,

whereW is a canonical divisor. We denote the set of differentials on X by Ω. The differential
space of the dividor D is

Ω(D) = {dh ∈ Ω : Div(dh) � A} ∪ {0}.

In the following, P1, P2, . . . , Pn are pairwise distinct places on X , and D is the divisor
D = P1 + . . .+ Pn. Let G be another divisor with support disjoint from D. We define two
types of AG codes, the functional and the differential codes, respectively:

CL(D,G) = {(f(P1), . . . , f(Pn)) : f ∈ L (G)} ,
CΩ(D,G) = {(resP1(ω), . . . , resPn(ω)) : ω ∈ Ω(G−D)} .

These codes are dual to each other, and CΩ(D,G) = CL(D,K +D−G) for an well-chosen
canonical divisor K. The Riemann—Roch theorem enables us to estimate the dimension
and the minimum distance of AG codes:

dim(CL(D,G))


> deg(G)− g + 1, 0 6 deg(G) 6 2g − 2,

= deg(G)− g + 1, 2g − 2 6 deg(G) 6 n,

6 deg(G)− g + 1, n 6 deg(G) 6 n+ 2g − 2.

The minimum distance of a functional code is at least its designed minimum distance

δL = n− deg(G).

AG codes have polynomial time decoding algorithms, that can correct up to t = (δL− g)/2
errors [5]. However, they are vulnerable to Schur filtration attacks. In particular, AG codes
are far from being s-good. The following proposition is derived from [17, Theorem 6].
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Proposition 1. Let G and G′ be two divisors on the curve X both with disjoint
support with the divisor D and such that degG > 2g + 1 and degG′ > 2g. Then

CL(D,G) ∗ CL(D,G′) = CL(D,G+G′).

In particular,
dim(CL(D,G)∗2) 6 2 dim(CL(D,G)) + g − 1.

Let C be a linear subspace of the functional code CL(D,G). The Schur filtration attack
constructs an effective decoding algorithm using a system of linear subspaces

Wi,j = {z ∈ Fnq : z ∗ C∗i 6 C∗j}.

Here, i, j > 1 may be arbitrary. Clearly, if i < j, then C∗(j−i) 6 Wi,j.

5. Subfield subcodes of 1-point Hermitian codes
Reed— Solomon codes form a well-known subclass of AG codes. In this section, we

present the construction of Hermitian codes, another subclass of interest. Let Hq be a
Hermitian curve over a finite field Fq2 . In affine coordinates, Hq is given by the equation

Hq : Y q + Y = Xq+1.

It is a non-singular curve, and its genus is g = q(q − 1)/2 by the genus formula. Hq has
one point P∞ = (0 : 1 : 0) at infinity, and q3 affine rational points P1, . . . , Pq3 . This
makes the class of Hermitian curves interesting since they attain the maximal number of
rational points for Hasse —Weil bound [18]. Such curves are called Fq2-maximal. Xing and
Stichtenoth [19] showed that for fixed q, the genus of a Fq2-maximal curve is 6 q(q − 1)/2,
and equality holds if and only if X is isomorphic to Hq.

Definition 3. Let s be a positive integer. The Fq2-linear code CL(D, sP∞) of length
n = q3 is called a Hermitian 1-point code.

In general, it is a hard computational problem to determine a bases of the Riemann—
Roch space L (D). For 1-point divisors D = sP∞ of the Hermitian curve, such a basis is
given in [18, Theorem 10.4]. The dual of CL(D, sP∞) is a 1-point Hermitian code too, with
parameter

s⊥ = n+ 2g − 2− s = q(q2 − q − 1)− s.

Clearly, 1-point Hermitian codes form an increasing series of linear subspaces of Fnq2 .
Let m be a positive integer and r = qm. Let C be a linear [n, k, t] code over Fr. The

Fr/Fq subfield subcode of C is defined as

C|Fq = C ∩ Fnq .

The true dimension k∗ of C|Fq is hard to determine, but the bound

k∗ > n−m(n− k)

is straightforward. Any algorithm that can decode up to t errors of C can be used to correct
up to t errors of the subfield subcode C|Fq .

In this paper, we examine the class

Cq(s) = CL(D, sP∞)|Fq
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of Hermitian subfield subcodes, and propose their usage in code-based cryptosystems.
In [20], we determined the true dimension of Cq(s) for some specific values of s. In [21], we
conducted an experimental study to analyze the true dimension of Cq(s) for q 6 16, and
concluded that the datasets can be best approximated by the extreme value distribution.

Here, our focus is on the resistance of Cq(s) to the Schur distinguishing attack.
We determine the parameters such that the key size is significantly smaller than in the
classic McEliece scheme. Notice that the Schur filtration technique may be used for key
recovery attacks on subfield subcodes of AG codes, as well, provided the degree m of the
field extension, and the genus of the underlying algebraic curve are small. In our case,m = 2
is small, but the genus is the largest possible with fixed field Fq2 and maximal length n.

Proposition 2. Let q be a prime power and let Cq(s) = CL(D, sP∞)|Fq be a 1-point
Hermitian subfield subcode. There are positive integers aq, bq such that Cq(s) is s-good if
and only if aq 6 s 6 bq.

We conducted numerical experiments to determine the values aq, bq for q 6 16, see
Table 1. The results motivate the following conjecture.

Open problem 1. Let q be a prime power and let Cq(s) = CL(D, sP∞)|Fq be a 1-point
Hermitian subfield subcode. Then dim(Cq(s)

⊥ ∗ Cq(s)⊥) = q3 if and only if s 6 q3 − q − 1.

Ta b l e 1
Interval bounds for s-goodness

q 4 5 7 8 9 11 13 16
aq 45 72 192 315 400 720 1 176 2 295
bq 59 119 335 503 719 1 319 2 183 4 079

6. Comparative of Hermitian subfield subcodes to McEliece cryptosystem:
key size and security level

The National Institute of Standards and Technology (NIST) has recently begun a
selection process to standardize asymmetric cryptosystems resistant to quantum computer
attacks [4]. Code-based cryptosystems are promising candidates for NIST selection.

In this section, we analyse the computational cost of solving the ISD problem for various
sets of parameters relevant to post-quantum cryptography. To do so, we consider classical
McEliece cryptosystem variants built on Goppa codes. The parameters for cryptosystems
reported in [22] are designed to be comparable to the computational cost required to break
AES-128 (Category 1), AES-192 (Category 3), and AES-256 (Category 5). The Tables 2
and 3 summarize the code parameters of Classical McEliece cryptosystem submitted to
NIST round 2-code-based cryptosystems, and those of 1-point Hermitian subfield subcodes
Cq(s) (code length n, dimension k, and error-capability t), as well as the computational
cost of Prange’s ISD algorithm, expressed as log2 (bit operations) with the public key size.

Ta b l e 2
Classic McEliece cryptosystem

Classic McEliece n k t Prange complexity Key size (bit)
Category 1 3 488 2 720 64 142.78 2 088 960
Category 3 4 608 3 360 96 184.89 4 193 280
Category 5 6 688 5 024 128 262.35 8 359 936

6 960 5 413 119 263.44 8 373 911
8 192 6 528 128 300.14 10 862 592
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Ta b l e 3
McEliece cryptosystem based on s-good 1-point Hermitian subfield subcodes

Code Type n k t Prange complexity Key size (bit)
Category 1 C11(1 174) 1 331 927 78 142.33 1 123 524
Category 3 C13(2 039) 2 197 1 735 79 185.89 3 206 280

C16(3 980) 4 096 3 634 58 187.40 6 715 632
Category 5 C13(1 861) 2 197 1 398 168 263.01 4 468 008

C16(3 874) 4 096 3 422 111 300.65 9 225 712
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