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ON THE NUMERICAL SOLUTION
TO A NON-CLASSICAL PROBLEM OF BENDING AND STABILITY
FOR AN ORTHOTROPIC BEAM OF VARIABLE THICKNESS

The mathematical model of the problem of bending of an elastically clamped
beam is constructed on the basis of the refined theory of orthotropic plates of vari-
able thickness. To solve the problem in the case of simultaneous action of its own
weight and compressive axial forces, a system of differential equations with vari-
able coefficients is obtained. The effects of transverse shear and the effect of re-
ducing compressive force of the support are also taken into account. Passing on to
dimensionless quantities, the specific problem for a beam of linearly varying
thickness is solved by the collocation method. The stability of the beam is dis-
cussed. The critical values of forces are obtained by varying the axial compressive
force. Results are presented in both tabular and graphical styles. Based on the re-
sults obtained, appropriate conclusions are drawn.
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Introduction

It is known that the structural elements used in various building structures have the
form of beams, plates or shells. To clarify the carrying capacity of such thin-walled
elements, sometimes it is necessary to solve the problem of bending and stability under
the action of axial compressive forces, taking into account its own weight.

In the scientific literature one can find numerous works in which questions of the
stress-strain state and stability of such elements are considered in the framework of the
classical theory of mechanics (see, e.g., [1]). In view of the present stage in the devel-
opment of materials science, one can say that, basically, these elements are anisotropic.
This led to the need for the mentioned research on refined theories, which take into ac-
count those factors that are neglected in the classical theory. The present paper is de-
voted to the study of this issue.

Problem Formulation

Consider an orthotropic beam of length /, constant width &, and variable thickness
h in the right-hand Cartesian coordinate system x, y, z .

The main directions of the anisotropy of the material are parallel to the coordinate
axes. The beam is elastically clamped at the two ends and besides of its own weight is
also under the action of axial compressive forces T (Fig. 1).

It is taken into account that the elastically clamped support due to friction with an
elastic array reduces the external compressive force P . As a result of this, the following
force acts on the beam

T=BP, P<l. (1)



112 S.P. Stepanyan

,J,Mi VY ui » \} P
T=pP T=pP

Fig. 1. A beam and compressive forces
Puc. 1. banka u cxxumaromias cuia

The value of the coefficient B can be easily determined experimentally. It is known [2]

that the conditions of the considered elastically clamped support with transverse
bending of the beam have the form

D _plan,-M,), w=aiBN_ . @)
x dx

Here, w is the bend; N, and M are the shear force and bending moment of the beam,

respectively; D and B are the parameters of the elastically clamped support, which are
related by the following relation:

D:%. 3)
a

The parameters D and B are inverses of the stiffness of the support for rotation and the
vertical displacement, respectively. In the systemS/ they have the following

dimensions: D~ N"'m™', B~mN~".
Note that in the derivation of conditions (2) it was accepted, due to the relative

smallness of the length 2a, the part of the beam inserted into the elastic array, without
deformation, moves progressively and rotates as one part. By virtue of this, the value of

. . .dw o .
the deflection derivative I do not change within the inserted parts and are equal to
x

the valuesat x=0 and x=/.

Development of a mathematical model of the problem

Using the refined theory of orthotropic plates of variable thickness (see [3], p.18),
we obtain the following differential equations for the bending problem of the beam
under consideration:

2 do
Ebh* == d’h +12pP d——bh 8+ hd il 1617ﬁ(p1 =12pgbh,
dx? dx? dx dx dx @)
3, 2, d d
Ehzd ZEh@d i X (Pl dh a9, - 0.
ax’ dx dx

Due to the absence of stress o, and the neglect of stress o, , the material parameter

By, is replaced by the Young modulus £ of the axial direction; y takes into account
the effect of transverse shear deformation e,_; ¢, is the function that characterizes the
distribution of tangential stress t,. in the mid-plane of the beam z=0.
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An axial compressive force acts on the beam, which decreases on the side of the
elastic array. Therefore, in the expression of the load term Z, [4], to the intensity of the

vertical load, arising from its own weight, the intensity of the fictitious load is added,
which appears as a result of the compression of a curved beam by forces BP . In system

(4), pis the density of the beam material and g is the gravity acceleration.

Thus, the problem under consideration is reduced to solving the system of
differential equations (4) with boundary conditions (2) written for both edges of the
beam: x=0 and x=/.

The obtained boundary-value problem (4) — (2) is a mathematical model of the
problem of beam bending.

Taking into account [3] the shear force of the beam N, and the bending moment
M ., which differ from the corresponding plate expressions by multiplication by the

beam width b, we have

2
d
gy P do)]
12 dx\ it dx
2
. bR E [ dw o o)
12 d2 dx

®)

Solution Technique

For simplicity, we assume that both edges of the beam have the same elastically
clamped support.
Let us apply the following dimensionless notations:

x=Ix, h=mlIH, b=m,Il, a=ml, ¢ =Eq,

Em’p B — 6
™P o p- 353, w=aw, BEl=B. ©)
my gl Eml

P=Em}I’P, p=

Consider the case when the thickness of the beam varies linearly:

h=ml+hx=mlH = H=1+7x, @)
where
hy
y=—1, h>0= h>-m,. (®)
m

Taking into account notation (6), equation (4) takes the form

12m? BP Y —8m,H HY® t6m, 5 12m5H,
dx dx dx
3 2 2— — (9)
SN ey S e L L S
dx’ dx dx* dx? dx dx

Boundary conditions (2), which must be satisfied at both edges of the beam, in view
of (6) and (7),at x =0 and x =1, will be
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Taking into account (7), equations (9) take the following form:

2
3Bm 2Pcf?—2m2 (1+yx)——4m2y(p 3ml p(l+7yx),
X

an
3— 2— 2— _
3 _2dw 3 _dw 2 _2d"Q 2 do
m; (1+yx) —+2m)y(1+yX ) ———ym; (1+yx)" ——2y¢m; y(1+yx)—+8¢p=0.

i ( Y)ﬁ3 Py ( YG# ami ( v)cﬁ.2 i y(1+73)——+89

And boundary conditions (10) at x =0 and x =1, are
@_Emz(lﬁ-y)_c)
dx 4m,

_ dw Bm2 (1+yx) dzv_v do
e AR AP ¥ T 1+ aw_, 4@
w=m— d)? o o—m; y( v )| my xd_

2
{swml(mx)(mx mm[ml frw—x%ﬂ
(12)

Computational Part
Let us perform calculations for the following values of parameters:

m =01 m =03 y=1 y=0,5,and 10;

— 13
p= 0.006; 3=0.5 B=I. (13)

Let us present the unknown functions w and ¢ as polynomials:

k k
W=ay+Y.aX, §=by+) b¥. (14)
i=1 i=1

The problem is to be solved by the collocation method.

To determine the above coefficients «,,a; and by,b;, we divide the interval
0<x <1 into k equal parts. To satisfy equations (9) at the dividing points and
boundary conditions (10), we obtain a system of 2(k +1) linear equations with respect
to these coefficients.

After solving the system, we find the values of the mentioned coefficients, with the
help of which we calculate the values of functions w and ¢ using formulas (14).

The dimensionless values of the transverse force N, and the bending moment M
at the end-points and the dividing points of the interval 0<x <1, are calculated
according the following formulas:

2

= mymy (1+yx)| _ dw _de
N = U e (14 40
f T { mi ( vx)v[mld =

(15)

3 — 2— —

— 1

M= MM ( +YX) m d V:_Xd(P
dx

x 12 dx |
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In this paper, the smallest dimensionless value of the critical force P, is determined

by varying the compressive force magnitude until w does not change its sign.

The results of the calculations given in Table 1 show that the allowance for the
influence of the deformations of transverse shears (case y >0 ) leads to a decrease in
the critical force.

Table 1
Critical force values

variable thickness (y=1)  Density of the material p =0.006
X % > 0 (transverse shear is taken into account)
0 5 10
P, — critical force 0.45 0.38 0.28
Table 2

Deflection maximum (w,,,, 10° ) depending on P/ P, at y=1 and different values of ¥

(deflection point is at X, =0.4)

P/P,

cr

=|
(=)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x=0 |0.585]0.634 | 0.692 | 0.763 | 0.853 | 0.969 | 1.127 | 1.353 | 1.702 | 2.318 | 3.689

x=5 |0.578 | 0.636 | 0.707 | 0.798 | 0.918 | 1.081 | 1.322 | 1.708 |2.440 | 4.382 | 26.42

x=10 | 0.563 | 0.620 | 0.689 | 0.778 | 0.894 | 1.052 | 1.283 | 1.652 | 2.341 | 4.098 | 18.45

Table 3
Bending values along the beam for y=1; p = 0.006; P = 0.1

X

0 0.1 0.2 0.3 04 | 05 0.6 0.7 0.8 0.9 1

0 | w-10° [0.04971/0.2146 | 0.4601 | 0.6418 | 0.7066 | 0.6551 | 0.5179 | 0.3392 | 0.1674 | 0.0504 | 0.0325

x| 5| w-10°]0.0550|0.2388|0.5074 | 0.7002 | 0.7621 | 0.6984 | 0.5455 | 0.3528 | 0.1727 | 0.0558 | 0.0475

10| w-10% [0.05980.2691{0.5705 [ 0.7799 | 0.8398 | 0.7614 | 0.5884 | 0.3764 | 0.1829 | 0.0610 | 0.0577

Figure 2 shows the changes of the basic quantities depending on the value of the
parameter y at P=02.

Figure 3 shows the changes of the deflection on the values of the parameters P and y.
Figure 4 shows the changes of the transverse force on the value of the parameters
Pand y.

Figure 5 shows the changes of the bending moment on the value of the parameters
P and y .
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Fig. 2. Distribution of the (a) deflection, Fig. 3. Distribution of the deflection:
(b) transverse force, and (c) bending moment x= (a)0,(b)5,and (c) 10
Puc. 2. Pacnpenenenue nporubda (a), morme- Puc. 3. Paciipenenenue nporuba:
peuHoii cuisl (b), narnbdaromero MoMeHTa (c) a-3=0;b—y=5;c—y=10

Consideration of the effect of transverse shear deformations does not significantly
affect the nature of the change in the value of the transverse force and the bending
moment (Figs. 2, b, ¢ and Figs. 4, 5).

Taking into account the effect of transverse shear deformations (case y >0 ), as was
expected, with the same values of the other quantities, leads to an increase in deflections
(Figs. 3, a, b, and ¢).

It should be noted that in the scientific literature there are many works devoted to the
description and application of the collocation method, as well as the study of the
bending and stability of thin-walled elements with different boundary conditions,
including the condition of an elastically clamped support [5—28].
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Fig. 4. Distribution of the transverse force: Fig. 5. Distribution of the bending moment:
x= (a)0,(b)S,and (c) 10 x= (a)0,(b) 5, and (c) 10
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Conclusions

A mathematical model has been developed to solve the problem of bending and
stability of an elastically clamped beam. The solution to the resulting system of
differential equations is based on the collocation method. Unknown functions are
approximated by polynomials. In numerical calculations, the stability of solutions is
studied depending on the degree of polynomials.

It is found that the maximum point of bending of the beam is located on its thin side.
An increase in compressive force leads to an increase in bending. Consideration of
transverse shear does not significantly affect the varying behavior of the transverse
force and bending moment.

The results are expected to be useful for engineers and builders.
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KiroueBsie cioBa: ynpyro-3ammeMiIeHHas OIIopa, H3THO, ITOTEePedHbIH CIIBHT, YCTOHIHBOCTb.

Ha ocHoBe yTO4YHEHHOI TEOPHUH OPTOTPOIHBIX IUIACTHH MEPEMEHHOH TOJIIMHBI, IIOCTPOSHA
MaTeMaTH4ecKass MOJENb 3a1add W3rnda M YCTOWYMBOCTH YIpPYyro 3alleMieHHOW Oamkw. Jlis
pelieHuss 3ajadyd B Cllydae OJHOBPEMEHHOI'O JCHCTBHS COOCTBEHHOTO Beca M CHKMMAIOIIMX
OCeBBIX CHJ THoiydeHa cucreMa Jud(epeHIMaNbHbIX YPaBHEHUH C IEpeMEHHBIMH
ko3 duIeHTaMl. YUHUTHIBAIOTCS TAKKE BIMAHHMA IOIEPEYHOrO CJABMIA M YMEHBIICHHS
CKAMarole cuiasl omopel. [lepexoas k Oe3pa3MepHBIM BeNWYMHAM, METOIOM KOJUIOKAIMK
pemraeTcsi KOHKpeTHas 3afada i Oanku JHMHEHHO HM3MEHSIOIeHcsl TommuHbl. HewmssecTHble
(YHKIMY alIIPOKCHMHPYIOTCS TONMHOMAMH. B IHCIICHHBIX pacdeTax HCCIemyeTcs yCTOHIHBOCTD
pelIeHnii B 3aBUCHMOCTH OT CTEIEeHH MOIMNHOMOB. OOCYKIaeTCsl yCTOHYMBOCTD OalIKH, BEITHIHHA
KPUTHYECKOH CHIIBI OIpeJelsieTCss N3MEHEHHEM 3Ha4eHHsI OCEBOH COKMMAFOIIEH CHIIBI 10 TeX I10p,
MOKa BEJIMYMHA Npornda He U3MEHHT 3HaK. Pe3ynbTaThl IPeICTaBICHb! KaK B TAOJIMYHOMN, TaK U B
rpaduueckoil popmax. [To moyueHHBIM pe3ysbTaTaM clelaHbl COOTBETCTBYIOIIME BBHIBOABL B
YaCTHOCTH BBUICHWIIOCH, YTO: a) MaKCHMallbHas TOYKa M3rnOa OajKu HaXOOUTCA Ha ee TOHKOW
CTOpPOHE. YBENMUYEHHE CXKHMAIOIIEH CHJIBI NPHBOAUT K YBEIWYEHHIO mporuda; 0) yder
MONEPEYHOTO CJBUTa HE OKa3blBaeT 3HAUUTENBHOTO BIMSHHUSA HAa W3MEHEHHE IIOBEICHHUS
MONEPEeYHONH CIIIBI M W3THOAromero MoMeHTa. I[lomydeHHbIe pe3ysnbTaThl OymyT TOJIE3HEI
WHXXEHEepaM U CTPOHUTEIISIM.
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