УДК 539.23:539.24

DOI: 10.17223/00213411/65/2/59

ВЛИЯНИЕ РОСТА ТЕМПЕРАТУРЫ НА ЭЛЕКТРОСОПРОТИВЛЕНИЕ УВСО

Е. Хуанбай¹, Н.Х. Ибраев², С.А. Гынгазов³, Д.А. Афанасьев²

¹ Карагандинский индустриальный университет, г. Темиртау, Республика Казахстан ² Карагандинский государственный университет им. акад. Е.А. Букетова, г. Караганда, Республика Казахстан

Проведены измерения электросопротивления $YBa_2Cu_3O_y$ в интервале температур 77–1000 К. На основе анализа рентгеновских характеристических энергодисперсионных спектров выполнен микроанализ элементных количественных составляющих образца до и после отжига в вакууме. Установлена взаимосвязь между фазовоструктурными преобразованиями и электрофизическими свойствами.

Ключевые слова: сверхпроводимость, электросопротивление керамики, кислородная стехиометрия, заселенность позиций, фазовый переход.

Несмотря на интенсивное изучение механизмов сверхпроводимости и проводимости, поведение высокотемпературных сверхпроводников $YBa_2Cu_3O_y$ (YBCO) в нормальном состоянии до сих пор недостаточно изучено. Причем понимание особенностей электрофизических свойств в нормальном состоянии в $YBa_2Cu_3O_y$ могло бы открыть путь к выяснению механизма сверхпроводимости. Значительная часть работ, посвященных исследованию сверхпроводимости YBCO, включает в себя температурные зависимости электропроводности, вольт-амперные характеристики и другие электрофизические измерения [1, 2]. Однако в подавляющем большинстве случаев они используются лишь как средства контроля за параметрами сверхпроводящего перехода либо трактуются в рамках достаточно узких физических моделей.

В настоящей работе экспериментально исследуются электрофизические свойства YBCO в интервале температур 77–1000 К. Образец YBa₂Cu₃O_y был синтезирован по известной керамической технологии из смеси оксидов иттрия и меди с карбонатом бария. Микроанализ количественного элементного состава образца контролировался энергодисперсионным методом с помощью рентгеновского спектрометра с энергетической и волновой дисперсией типа JXA-8200, встроенного в сканирующий электронный микроскоп JEOL JSM-5910. Получены характеристические рентгеновские энергодисперсионные спектры YBCO. На рис. 1 приведены характеристические рентгеновские энергодисперсионные спектры элементных составляющих образца с критической температурой $T_{\rm c}=92$ К и шириной сверхпроводящего перехода $\Delta T_{\rm c}=1$ К.

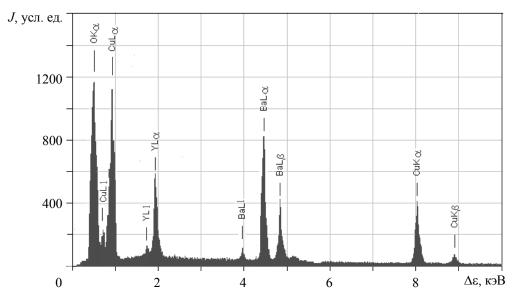


Рис. 1. Характеристические рентгеновские энергодисперсионные спектры керамики YBCO

³ Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Уважаемые читатели!

Доступ к полнотекстовой версии журнала «Известия высших учебных заведений. Физика» осуществляется на платформе Научной электронной библиотеки eLIBRARY.RU на платной основе:

https://elibrary.ru/contents.asp?titleid=7725