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Ta b l e 2
Experimental evaluation of total mixing

and nonlinearity characteristics

k Round t of total mixing Round t of nonlinearity
1 30 33
3 18 20
5 16 18

6. Conclusion
Advanced characteristics of RKG based on MAG are shown both with and without the

use of LCG. In the first case, the structural properties of the permutation states of RKG are
guaranteed by the LCG parameters. In the second case, they are justified experimentally.
The computational complexity of the round key generation method is low, which can be
explained by uncomplicated implementation of MAG and LCG.

The presented method of key schedule generation can be used in many iterated block
ciphers, in particular, the method is recommended for wide-block algorithm KB-256.
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THE DIFFERENCE RELATIONS AND IMPOSSIBLE DIFFERENTIALS
CONSTRUCTION FOR THE KB-256 ALGORITHM

V.M. Fomichev, A.V. Kurochkin, A.B. Chukno

In this paper, new results of the analysis of the KB 256-3 block cipher algorithm are
outlined. We set up a difference relation with probability 1 for the six-round algorithm
under study and propose a key recovery method using this difference relation for the
nine-round KB 256-3 algorithm. We construct an impossible differential for the full-
round algorithm.
Keywords: differential cryptanalysis, impossible differentials.

1. Introduction
The existence of a difference relation for a block cipher algorithm may indicate the

possibility of developing efficient key recovering methods. We show that difference relations
discovered for a block cipher algorithm can be efficiently used for key recovery computation
(as compared to exhaustive key search) for the nine-round KB 256-3 algorithm. The
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existence of an impossible differential for a block cipher algorithm enables cryptanalysts to
recover information about encrypted blocks.

2. Description of the KB 256-3 encryption algorithm
The КB 256-3 encryption algorithm, based on the generalized Feistel network, was

proposed in [1, 2]. Next, the algorithm description is provided.
We introduce notations as follows:

— �— the addition modulo 232;
— ⊕— the XOR of two binary strings of the same length;
— Vn — a set of binary strings of length n ∈ N, where V = {0, 1};
— K = (K0, K1, . . . , K7), where Kj ∈ V32, j = 0, . . . , 7, — an encryption key;
— Qi = (q0.i, q1.i, q2.i), where q0.i, q1.i, q2.i ∈ V32, i = 1, . . . , 16, — round keys, derived from

the encryption key.
Encryption of a 256-bit block X = (X0, X1, X2, . . . , X7), where X0

j ∈ V32, j = 0, . . . , 7,
with an encryption key K can be performed by applying 16-round functions R, in sequence.
Each of these functions depends on three 32-bit round keys (qi0, q

i
1, q

i
2), i = 1, . . . , 16 (i.e.,

each round of encryption uses three round keys). We denote the round transformation of
the КB 256-3 encryption algorithm by R : V256 × V96 → V256.

As a result, after the round i ∈ {1, . . . , 16}, the block X ∈ V256 encrypted with the
key K can be written as

R(. . . R(R(X0, Q1), Q2)), . . . , Qi) = X i = (X i
0, X

i
1, . . . , X

i
7).

We introduce the additional notation:

F (X,K) = R(. . . R(R(X,Q1), Q2)), . . . , Q16).

3. Round transformation
We define a round transformation. We use notations as follows:
1) Σ(A0, A1, . . . , A7) = A1 � A3 � A4 � A6 � A7, where Ai ∈ V32, i = 0, . . . , 7;
2) f(a0, a1, . . . , a7)=T (s0(a0), s1(a1), . . . , s7(a7)), where 4-bit permutations s0, s1, . . . , s7

are taken from [3], T is the left cyclic shift of a 32-bit string by 19 positions, ai ∈ V4,
i = 0, . . . , 7.

Hence, the round transformation can be written as

R (A, (b0, b1, b2)) =

= (A1, A2 ⊕ f(Σ(A)� b0), A3, A4, A5 ⊕ f(Σ(A)� b1), A6, A7, A0 ⊕ f(Σ(A)� b2)).

4. Round key sequence
To construct a sequence qj based on the key K = (K0, K1, . . . , K7), Kj ∈ V32, j =

= 0, . . . , 7, we use the non-linear shift register with α ∈ V32 as a parameter. The initial
state of the register is:

q1 = K0, q2 = K1, q3 = K2, q4 = K3, q5 = K4, q6 = K5, q7 = K6;

qi = T1 [qi−1 � qi−3 � qi−5 � qi−7]�K7 � (i− 7)α,

where i ∈ {8, . . . , 123} and T1 is a left cyclic shift of a string from V32.
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5. Difference relation
We define the difference relation for the algorithm under study. LetX0, X0 be plaintexts:

X0 =
(
X0

0 , X
0
1 , X

0
2 , X

0
3 , X

0
4 , X

0
5 , X

0
6 , X

0
7

)
,

X0 =
(
X0

0 , X
0
1 ⊕ 231, X0

2 , X
0
3 , X

0
4 , X

0
5 , X

0
6 ⊕ 231, X0

7

)
.

It is evident that X0⊕X0 = (0, 231, 0, 0, 0, 0, 231, 0). For plaintexts X0 и X0 and any round
keys Q1, Q2, . . . , Q6 ∈ V96 the following equations hold:

R(. . . R(X0, Q1), . . . , Qi)⊕R(. . . R(X0, Q1), . . . , Qi) = Ci,

where i = 1, . . . , 6 and constant C1, C2, . . . , C6 are

C1 = (231, 0, 0, 0, 0, 231, 0, 0); C2 = (0, 0, 0, 0, 231, 0, 0, 231); C3 = (0, 0, 0, 231, 0, 0, 231, 0);

C4 = (0, 0, 231, 0, 0, 231, 0, 0); C5 = (0, 231, 0, 0, 231, 0, 0, 0); C6 = (231, 0, 0, 231, 0, 0, 0, 0).

Thus, the difference relation with probability 1 for the six-round algorithm is provided.

6. Difference relation attack on 9 rounds
We consider the truncated KB-256 algorithm which comprises 9 encryption rounds. The

algorithm structure besides the number of rounds is similar to that of the original algorithm.
Let X0 and X0 be plaintexts such that X0⊕X0 = C0. The encrypted plaintexts X9, X9

are known to the cryptanalyst.
It is also known thatX6⊕X6 = (231, 0, 0, 231, 0, 0, 0, 0). Due to the algorithm functioning

principles, the following equations hold:

X6
4 = X8

2 ; X6
7 = X8

5 .

The equations are easy to verify.
Next, we demonstrate how round keys q9

1, q
9
2 can be recovered. For ease, we denote

a = q9
1, b = q9

2. The cryptanalyst derives:

Y1 = X9
1 ⊕ f(X9

0 �X
9
2 �X

9
3 �X

9
5 �X

9
6 � a);

Y2 = X9
1 ⊕ f(X9

0 �X
9
2 �X

9
3 �X

9
5 �X

9
6 � a).

(1)

The Y1, Y2 values potentially coincideX8
2 andX8

2 respectively. It is known thatX8
2 = X8

2.
So for the key a the following equation holds: Y1 = Y2.

The b key can be recovered in the same way. Generally, it is possible that for several a
values equations 1 hold. In this section, we study the KB-256 algorithm properties without
delving into the key recovery algorithm. Therefore, for ease, we assume that having a
single a, the equations 1 hold. Obviously, recovering a round key allows recovering the key
within approximately 2224 operations. By operation we assume encryption of a block using
KB-256.

7. Finding an impossible differential for the KB-256-3 algorithm
In this section, we prove that an impossible differential exists for the KB-256 algorithm.

We assume that an impossible differential for the encryption algorithm E : Vn × Vk → Vn
is the pair D1, D2 ∈ Vn such that for any key K ∈ Vk and for any X,X ∈ Vn such that
X ⊕X = D1 the inequality holds:

EK(X)⊕ EK(X) 6= D2.
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If an impossible differential exists, in some cases, it is possible to design an effective
attack on block algorithms [4]. In general, this property enables a cryptanalyst to gain
some information about the plaintext from the ciphertext.

We demonstrate that there exists an impossible differential D1, D2 for the KB-256
algorithm, where

D1 = (0, 231, 0, 0, 0, 0, 231, 0), D2 = (231, 0, 0, 231, 0, 0, 0, 0).

By verification, a cryptanalyst can make sure that the text pair X,X such that
X ⊕ X = (0, 231, 0, 0, 0, 0, 231, 0), after 8 rounds, becomes the pair X8, X8 such that
X8⊕X8 = (t1, t2, 0, t3, t4, 0, t5, t6) for some non-zero vectors t1, t2, t3, t4, t5, t6 ∈ V32. We note
that t1, t2, t3, t4, t5, t6 depend on each pair X,X.

In Table 1, the differences between texts after each of 8 rounds are presented.

Ta b l e 1

Round no. Difference
1 (231, 0, 0, 0, 0, 231, 0, 0)
2 (0, 0, 0, 0, 231, 0, 0, 231)
3 (0, 0, 0, 231, 0, 0, 231, 0)
4 (0, 0, 231, 0, 0, 231, 0, 0)
5 (0, 231, 0, 0, 231, 0, 0, 0)
6 (231, 0, 0, 0, 0, 231, 0, 0)
7 (0, ◦, 231, 0, ◦, 0, 0, ◦)
8 (t1, t2, 0, t3, t4, 0, t5, t6)

By ◦ we denote non-zero differences. By verification, the cryptanalyst can make sure
that the pair Y 16, Y 16 such that Y 16 ⊕ Y 16 = (231, 0, 0, 231, 0, 0, 0, 0) after 8 reverse rounds,
becomes the pair Y 8, Y 8 such that Y 8 ⊕ Y 8 = (t′1, t

′
2, t
′
3, t
′
4, 0, t

′
5, t
′
6, 0) for some non-zero

vectors t′1, t′2, t′3, t′4, t′5, t′6 ∈ V32. We note that t′1, t′2, t′3, t′4, t′5, t′6 depend on each pair Y 16, Y 16.
In Table 2, the differences between texts after each of 8 rounds are presented in reverse

order.

Ta b l e 2

Round no. Difference
15 (0, 231, 0, 0, 231, 0, 0, 0)
14 (0, 0, 231, 0, 0, 231, 0, 0)
13 (0, 0, 0, 231, 0, 0, 231, 0)
12 (0, 0, 0, 0, 231, 0, 0, 231)
11 (231, 0, 0, 0, 0, 231, 0, 0)
10 (0, 231, 0, 0, 0, 0, 231, 0)
9 (◦, 0, ◦, 0, 0, ◦, 0, 231)
8 (t′1, t

′
2, t

′
3, t

′
4, 0, t

′
5, t

′
6, 0)

An impossible differential exists if for text pairs X,X and Y 16, Y 16 such that X ⊕X =
= (0, 231, 0, 0, 0, 0, 231, 0), Y 16⊕Y 16 = (231, 0, 0, 231, 0, 0, 0, 0), the sets (t1, t2, 0, t3, t4, 0, t5, t6)
and (t′1, t

′
2, t
′
3, t
′
4, 0, t

′
5, t
′
6, 0) never coincide. As a result, since we have t′5 6= 0, we derive that

an impossible differential exists.

8. Conclusion
In this paper, the KB-256 properties that may influence the overall cipher strength are

provided. However, no key recovery method has been found more efficient than exhaustive
key searching for the full-round algorithm.
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