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Abstract. One of popular mathematical models of filtration is the classical elastic regime
model describing the nonstationary equilibrium filtration. It is also called the Muskat—
Leverett model. Solving filtration problems by Monte Carlo methods makes it possible
to find the solution of the problem at an individual point of the domain and to estimate
derivatives of the solution. This paper is devoted to applying algorithms of the Monte
Carlo method to problems of filtration. The Monte Carlo algorithms of random walk by
spheres and on boundaries are used for solving the stationary problem of filtration of two
immiscible inhomogeneous incompressible fluids in a porous medium and for estimating
the solution and the derivatives of the solution of this problem.

Keywords: Monte Carlo method, continuity equation, Dirichlet problem, Markov chains,
estimate of the solution and its derivatives

For citation: Tastanov, M.G., Utemissova, A.A., Mayer, F.F. (2022) Application of
Monte Carlo methods for solving the regular and degenerate problem of two-phase
filtration. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika —
Tomsk State University Journal of Mathematics and Mechanics. 80. pp. 147-156. doi:
10.17223/19988621/80/13

Hayunas craTbs

IIpumenenne meronoB MonTe-KapJio 1Jisl peleHusi peryJsipHoi
U BBIPOKACHHOM 3a/1a4u ABYX(a3HOH PUIbTPALMHU

Meiipam6ek I'a6ayanesuy Tacranos’, Anap AaraeBna YTemucosa’,
®enop Penoponud Maiiep®

123 Kocmanaiickuii pecuonanouwiii ynueepcumem um. A. Baiimypcvinosa, Kocmanaii, Kaszaxcman
ltastao@mail.ru
2 anar_utemisova@mail.ru
3 maiyer@mail.ru

AnHotamus. OHON 13 MOMYISIPHBIX MaTeMaTHUSCKUX Mojieell (QMIbTpalin SIBIsIeTcs
KJIaCCHYECKasi MOJZIeIb YIIPYroro pexnuma, OINHUChIBaoIas (GHIBTPALUIO C HeCTallHOHAp-
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HBbIM paBHOBecHueM. Ee Takxke Ha3plBalOT Mozenblo Mackera-JleBeperra. Pemenue 3anau
¢unpTparu MetogamMu MonTe-Kapiio mo3Bosisier HaTH pelleHne 3a1adyl B OT/eIbHON
TOYKe OOJIACTH U OIIEHUTHh NIPOM3BOJHBIE pelleHus. JlaHHas CTaThsl MOCBAIIEHA MPUMe-
HeHUIo anroputMoB Momnte-Kapmo k 3amayaM (QMiIbTpanuy. AJNTOPUTMBI CIydaiHOTO
OmyxaaHus 1o cdepaM M 1o rpaHuliaM MetonoM MoHrte-Kapio ncnons3yrores Uit pe-
IIEHHs] CTAIIMOHAPHOW 3ajaud (MIBTPAlUM IBYX HECMEIIMBAIOIINXCSI HEOTHOPOIHBIX
HEC)KUMAaeMbIX XHUIKOCTEH B MOPHUCTOH cpefie W AN OLUEHKU PEUIeHHsS U IIPOU3BOJHBIX
OT peLICHUs ITOH 3afaun.

KumroueBsbie ciioBa: Meto MonTe-Kapio, ypaBHeHne Hepa3pbIBHOCTH, 3aaada Jlupuxie,
nenu MapkoBa, OLIEHKa PELIEHUS U €ro MPOU3BOIHBIX

s uutupoBanus: TactanoB M.I'., Ytemucosa A.A., Maiiep ©.®. [Ipumenenne me-
TonoB Monte-Kapno s pemeHnst peryisapHOil U BBIPOKACHHOH 3amaun AByX(azHOU
¢unbTparmu // BectHuk TOMCKOTO roCyIapCTBEHHOTO YHHBEPCUTETA. MareMaTiKa U Me-
xanuka. 2022. Ne 80. C. 147-156. doi: 10.17223/19988621/80/13

Formulation of the problem
Let us consider the initially boundary problem for saturation and reduced pressure

(s, p) in a given finite domain Q € Rn (n > 2) with the boundary 02, Q = Q x [0, T],
G=0Qx[0, Tl

mgzdiv(KoaVs+ K, Vp+f), (x,t) €Q, (1)
div(KVp+ f) =0, (x,t) €Q, (2)
s(x,t) =s,(x,1), (x,t) €G, 3)

P(X,t) = py(x,t), (X,t) €G, 4)

s(x,0) =s°(x,0), xe Q, (5)

where the coefficients Ko, a, K, f,, K, and f , as well as the boundary and initial

conditions, are given [1].
For the approximate solution of problem (1)—(5), two methods were proposed in [2]:
Method 1.

Ls,, =-m % +div(K(x,5,)Vs,.,) +B(X,5,)Vs,,, +

(6)

+D(x,5,)Vp;,,Vs,., =0, (x,t) € Q,
5,060 =5,( 1), (x.1) €6, )
S,,,(%,0)=s°(x,0), x e Q, (8)
L, piy =div(K(X,5)Vp;,; + f4()(1 $)) =0, (x,t) eQ, 9)
P (X 1) = po(X,1), (X,1) €G (10)

wheremK =Koa, mB = K Vm+ f', —bf’, mD =kb’, b(s) = KiK™, k = ko1 + koz, koi
are the phase permeabilities for a homogeneous isotropic soil (i =1, 2).

Method 2.

After dividing the time interval [0, T] into N parts (t = T/N) for each time layer
teflt, (1 + )7}, 1 =0, ..., N — 1, the initially boundary value problem is solved for the

functions s,,,(X,t), P, (X), (5, (x,17) = ' (X), 8,(,0) =s°(x) =s°(x,0)) :
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(11)
+D(X, Sl )Vpl+1vsl+l = 0’ (X’t) € Ql
S, (X t)=5s,(xt), xeG, (12)
s, (xlt)=s', xeQ, (13)
L,py.y = div(K(x, 8 )V, + F(x,5) =0, (1) €Q, (14)
P (X) = py(x17), xeQ, (15)
Let us describe the general scheme of using Monte Carlo algorithms for methods 1

and 2 [3].

For method 1, the Dirichlet problem is first solved for the linear elliptic equation (9),
(10) for pi+1(x, t) at a given saturation value s; and fixed t = to, in particular, to = 0.
Then, equation (6) is split only with respect to the time variable, i.e., for the iteration
index i + 1 the time interval [to, T] is divided into M parts (t = (T-to)/M) and for each
time layer tj=1j + to, j =0, ..., M —1, by use of the implicit difference scheme for (6),
the Dirichlet problem for an elliptical equation for the variable s/''(x) is obtained. The
corresponding boundary and initial conditions (7) and (8) are written in the form

st () =80"(x), xedQ, j=0,M -1,
s?,(x,0) =s°(x,0), x e Q.

Now, omitting the subscript, we obtain

i+l _ Qi _ . . . . .
“mE T3 L div(K (x s1)Vs) + B(x, sT) Vs + a6)
+D(x,s")Vvp't.vsi™t =0, j=0,1..,.M -1,
s (x) =si"(x), xedQ, j=0,1,..M -1, (17)
s°(x,0) =s°(x), x e Q. (18)

For method 2, similarly to method 1, the Dirichlet problem for the linear elliptical
equation (14), (15) is first solved for p..1(x) at a given saturation s'; in particular, at | = 0
from (13) we obtain si(x, 0) = s%(x), x Q. Now, using the purely implicit scheme,
approximating only with respect to the time variable, for the initially boundary problem
(11)—(13) for the variable si:1(x) = $*1(x), (I = j), we obtain the Dirichlet problem for
the elliptical equation, i.e., problem (16)—(18).

Thus, to determine p and s, one has to solve the Dirichlet problem for the elliptical
type [4].

Omitting indices of the time layer j, we obtain for the determination of pressure {(x)
(P (x) =pi*(x)) the problem

div(K (x,5))Vp+ f(x,5)) =0, x e Q, p(x) = P, (X), X € 0Q2
or

K(x, s))Ap(x)+ZC (x,5)- ap( )

P(X) = p, (X), XeoQ, (20)

+g(x s)=0,xeQ, (19)
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where Ci(x, s) = ai K(x, s), g(x, s)=div ¥ (x,s); when determining the saturation
Xi
§(x) (5(x) =s**(x)), we obtain
div(R(x, $))V8)X)) + (B(x, s) + D(X, S)VP(X))VS(X) — Ms(X) = —is(X), X € Q,
§(x) =5§,(x), xe 0, s(x) =s°(x), xe Q
or

K(xs)As(x)+ZE(xs) +ZB( ,8)—~2 ()

0o i (21)
£ D(x,5)- 2 . Zf(') (X)3(X) = —MS(X), X € Q,
S(x) =5,(x), xeoQ (22)
ey

where s(x) is a known function by virtue of the initial data, m(x)=

m(x) , Ej( )_ai K (x,s), Bj(x,s) are components of the vector B(x,s).

m(x) =
X

Let us construct a random process and algorithm for solving problem (19), (20).
Consider the Dirichlet problem for a function ¢ continuous at the boundary oQ,
a measurable function f, and an elliptical operator L

Lu(x)=—f(x), xeQ, (23)
u(x) = d(x), x € 6Q. (24)

Let us construct random processes for numerical finding of the solution u. We sup-
pose that the domain Q and operator L are such that problem (23), (24) has a unique
solution, continuous in Q and regular in Q, for any sufficiently smooth f and ¢ [5].

It is known that the integral representation

u) = [ ke yu)dy+ [ Aly,x)f(y)dy, (25)
V(x) V(x)
where k(x,y) =N A(y,x) >0, A(y,x) —is a Levy function, Ny is an operator adjoint
to the operator L, V(x) is an ellipsoid,

V(X) =Ve (%) = {y 1oy, ) = (A0 —X), (y=X))? < R(x)}.

is valid for the solution u(x) of the boundary problem (23), (24).
Here, R(x) is a maximum radius ball with a center at the point x lying in Q and A is
the matrix of higher coefficients of the operator L; the matrix is symmetric [6].
Representation (25) is called the mean value theorem. Note that if the coefficient
C <0 at u(x) in equation (23) of the operator L, then the kernel k(x, y) is substochastic,

i.e., j k(x, y)dy <1 [7]. Representation (22) allows one to construct unbiased esti-
V (x)
mates for the solution of problem (23), (24). Any regular solution of problem (23), (24)

satisfies equation (25) and boundary condition (24). In connection with this, we define
operator K acting on functions from C(ﬁ) by the formula
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[ kOuyu)dy, xe,
(Ku)(x) = qvin (26)
u(x), xeoQ.
Consider the following problem: for ¢ C(8Q) and F e C(Q), find uec(Q)
such that
{u(x) = (Ku)(x) + F(x), xe Q, @
u(x) = ¢(x), x € 0

If F(x)= [A(y,x)f(y)dy, then the solution of problem (27) is a solution for (23), (24).
V(x)
In [8], the uniqueness theorem was proved for the class of Kkernels
k(x,y)=N yA(y, x) of the operator K acting by formula (26) and having the properties
1) mes(V (x)AV(X,)) = 0asx, — X,,
2) diam(V (x)) > Ofor x € 0Q,

3) kernel k(x,y) is substochastic and weakly polar, k(x,y)=W(x, y)/|x—y|“'1,
n>3, where the function W(x,y) can be continuously extended from QxV(x) to
Qxﬁ,

4) |K
(Ku)(x) = j k(x, y)u(y)dy and satisfying properties 1), 2), and 3) maps functions

e

bounded in Q into continuous ones. It is easy to establish that for an operator satisfying
properties 1), 2), 3) the following conditions hold:

a) for any u e C(Q),
I k(x, y)u(y)dy —> u(x,)as x — x, € 0Q,

V(x)

.~ =1 then the integral operator acting in L*(Q) by the formula

b) [ k(x,y)dy —>1lasx — x, € oQ.

126
From the above, it follows that the operator defined by formula (26) is bounded in

Cc),ie., problem (27) can be solved in C(€2) and problem (27) has not more than

one solution in C(ﬁ) .

Construction of unbiased estimates of solution (27)

Let V(x) and kernel k(x, y) satisfy properties 1), 2), 3) and additional requirement b).
By virtue of the last property, the spectral radius of the operator K is equal to unity;
therefore, one cannot use the standard estimates for solving integral equations of the
second kind by Monte Carlo methods. Here, the estimation scheme is based on the
martingale theory. In this case, it is easy to analyze the variance of the estimates.

A terminating Markovian chain is determined with a transition density

P(x,y) =k(x,y), yeV(x). The probability of termination q(x)=1— [ k(x,y)dy
V(x)
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tends to zero at x € 6Q); therefore, the trajectory of the chain can have an infinite

length. For the set of trajectories B having an infinite length, the following Lemma is
valid:

Lemma. Let problem (27) be solvable for F =0, p=1. If there exists a function
0<H eC(£2) such that problem (27) for F =H, ¢=0 is solvable, then for a chain

{xm }::o with transition density P(x, y) almost all trajectories of infinite length ap-
proach the boundary oQ:
P, {dist(x,, 602) ——>0|8} =1, and P, {B) > 0. (28)

Proof. From Lemma 2.3.3 (see Lemma 2.3.3, [4] it follows that for the solution
u(x) of problem (27) with F=H, ¢=1 the maximum principle is valid: u(x) reaches

the smallest value on the boundary of the domain. Hence, u(x) > 0. Let y; be the indica-

tor of an event (the moment of chain termination > i), {A,}”, be a sequence of

o-algebras generated by the chain up to the time moment n.
Consider a sequence of random variables

n-1
= Z H (Xi )X| +Xnu(xn)'
i=0
The sequence {n,}” isa positive martingale with respect to {A }” . Indeed,

M A = SO0 M, (00} -

n-.

N

HOO X0 [ KOG % )u0x)dx, =n, .

T(anl)
Then, by the martingale convergence theorem [9], there exists a random value m_,
such that M,n, <40 and m, »mn, as n—o with probability 1. Consequently,

TN
o

almost everywhere on the set B H (x,)—>0as n—oo. Let
oQ, ={xe Q' :dist(x,0Q) <&}, Q, =Q\oQ,.
It is evident that H (x)2const =c(e)>0onQ, . If B, is a subset of trajectories

from B such that H(x,)—0asn—> oo, then PH(E\B) 0. Hence, |fP( )>O then

P (dist(xn ,aQ)—>o||§) =P, (dist(xn ,aQ)—>o|él).

5 not
Let X =(X), %, X,,) € By, but dist(xn,aQ)n—>0. Then there also exists & and
—> 0

an increasing sequence {nk}f:O such that dist(x, ,0Q) >¢,. Hence, H(x, )>c(e) >0,
s0 X ¢ B,. It follows that {X : dist(xn,aﬁ)wo} D I§1. Therefore, if P,(B)) >0,
then P, {dist(xn : aﬁ)ﬁoﬁ} =
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Now let us prove that Px(lgl) > 0. By condition of the lemma, there exists a solution
to problem (27) with F =H and ¢=1. Let us denote it as v(x). It can be shown that
inf v(x) >0, xe Q. A martingale n, =y,v(x,) is uniformly integrable; therefore, by

the martingale convergence theorem, v(x) =M, limn, =0, if P, (B)=P,(B)=0. And

this contradiction proves the inequality Px(ﬁl) > 0. The lemma is proved.

If we take H(x) = .f A(X, y)dy as H(x) , then we can construct estimates for the so-
V(x)

0

neo With a transition density

k(x,y), yeV(x),
0, y 2V (x).

The sequence of estimates {ﬂm}::() is determined by the equality

lution u(x) of problem (27) on trajectories of the chain {x,, |

P(x,y) ={

m-1
N =ZF(Xi)Xi +y;u(x), where y, is the event indicator {the moment of the chain
i=0

termination > i}. Obviously, M,n, =u(x), i.e. estimates n, are unbiased. The se-
quence {n,}"  formsa martingale with respect to {A }” —a sequence of c-algebras.
A, is generated by the chain up to the time instant m. The last statement is proved in
the same way as the Lemma. From this we have

Corollary. For a Markovian chain {xn };‘;0 determined by the transition density
P(x,y) =k(x,y) =N, A(y,X), (28) is fulfilled.

Let 1, be the moment of chain termination, t, be the moment when the chain en-

ters the 3-neighborhood of the boundary t, = min(t,,t,). A sequence {&_ 1" of unbi-
ased estimates for the solution u(x) of problem (23), (24) is called admissible if there
-, suchthat A, cY, and A, =Y, and &,

exists a sequence of c-algebras {Ym }m:O
has the form &, =& +y,u(x,), where & Y, are measurable. For an admissible se-

m+1?

guence of estimates {E_,m }::O , we define a random variable &; by the equality
EJG = &Jtd +¢(Xro )’ (29)

where x_ denoted a border point closest to X _. The definition is correct since

T, < +oo by virtue of the above Lemma.
We finally obtain

Theorem. If an admissible sequence of estimates {&m}:zo forms a square integra-

ble martingale with respect to a family of c-algebras, {Ym }::o , then the random varia-

ble &; is a &(d)-biased estimate for u(x), its variance is a bounded function of the pa-
rameter & (&(3) is the modulus of continuity of the function).
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Proof. Let y denote the indicator of the event {t, =1, } . By the theorem about the free
choice transformation [6], M,&_ =u(x), therefore, |u(x) - MX§5| = | M,E. — MX§5| <

<M xjux, ) —o(x, )| <&(d), i.e. (8) and the bias of the estimate is proven. Now let us
prove that the variance is bounded. We introduce an abbreviation & for & , then we obtain

2_

DE; =M, (& -M&) =M, (& —E+E-u(X) +u(x) - M, &) <
<4 M, (& -&)" +M, (E-u(0) +(u(0-M.E )" |<8:%(3) +4D5

0

By virtue of square integrability of the martingale {&,}" , SupM &2 < +oo, there-

n=1"'
fore, the D&, < +oo. The theorem is proved.

Consider now the sequence of estimates {n,}” .

Lemma. If problem (27) is solvable when F(x) is replaced by |F(x)| and
F?(x), $=0, then the martingale {n,}" is square integrable.

Proof. Letus put s, =;F(x); and let v, , denote a solution of problem (27). Under
conditions of the Lemma, F(x) —0as x — X, € 0Q; therefore, F(x) is bounded in Q.
Let F=||F||:nx1€egx)x|F(x)|; then, for the function H(x)=|F(x)|/F, equation (27) is

solvable at ¢@=0 paspemmmo. Its solution v;, can be represented as a series

Voo = ZK”G. Since 0<G<1, the series ZK"G2 also converges and yields a solu-

m=0 m=0

tion Vo, of problem (27). Therefore, there exists Voo, Then,

n—:

n-1 2 1 \?
ni = [zsi +Xnu(xn)j < 2 [Zsi) + 2Xnu2(xn)’ MxXnuz(Xn) < "u"i(gr) '
i=0 i

i=0

n—: 2 n—. n— n-:
M, (isij < szllsinFZMXZisi i S =l +21,,1,<v,, .
i=0 i=0 '

i=0  k=i+l
To estimate the second summand, we use the Markov property:

) SiM{|si|Mx{i|sk||Yi|Hs M, S s 0.

2
‘ . Lemma is

2 2
Therefore, 1, s‘ Thus, sup Mg < 2|ul" +Ve, o +{Vie o

2
‘V‘F"OHC(Q)'
proved.

Now, it remains to determine for problem (23), (24) a sequence of unbiased esti-
mates which are obtained from n, according to the estimate F(x;) by a single random

node with the density A(y,x)/h(x), h(x) = I A(y,X)dy. In this case, the sequence

V(x)

m-1
of unbiased estimates &, +Zh(xi) f (Y )x Hau(x,) forms a martingale with respect
i=0
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to {Y, |~ . Here, Yo, ¥, .. Yy, - are independent random vectors with the densities
AQY, %) /h(x;), Y, is a c-algebra generated by X;, X, ..., Xys Yo: Yis --r Yy THE Lem-
ma below follows from the previous one.

Lemma. The martingale {gm}:zo is square integrable.

Finally, applying the theorem to the martingale {gm }°° we obtain

m=0"

Theorem. Let g(8) be the modulus of continuity of the solution u(x) of problem
(23), (24); then, the estimate &;, determined according to {&_}" by formula (29), is
€(d)-biased for u(x). D& is a bounded function of the parameter 5.

Conclusions

To implement the algorithm in practice, it is necessary to learn to model the chain
{X,}_, on trajectories of which estimates of the solution are constructed, and algorithms

of simulation of the Markovian chain A(y, x)/h(x) are based on the von Neumann

selection method. Modeling distributions requires special investigations, especially in
cases where it is necessary to model the distributions regularly and repeatedly. Such
investigations are usually carried out for each specific equation if it is solved several
times.
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