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Jna yumuposanua. AOxymykypoB A.A., Caiipymnoea I'.C. AcumnroTndyeckue cBoicTBa MOAW(PHUIMPOBAHHBIX
SIMITMpHYEcKNX InponeccoB Kama B obmeit Momenu cirydaiiHoro nensypuposanus // BectHuk Tomckoro rocymap-

CTBEHHOTO YHHBEPCHUTETa. YTPaBJICHHE, BHIUHCIUTENbHAS TeXHUKAa W nH(opmaruka. 2022. Ne 61. C. 26-36. doi:
10.17223/19988605/61/3

The empirical distribution function has been widely used as an estimator for the distribution function
of the elements of a random sample. It is not, however, appropriate when the observations are incomplete.
Developing the corresponding theory of convergence of considered empirical and concentrated processes to
a Gaussian process has been obtained by many scientists. A generalization of these results for the case of
competing risks or when present various types of censorship considered by authors [see, for example, [1-3]].
These results have numerous statistical application in areas such as medical follow-up studies, life testing,
actuarial sciences and demography (see, also, [4—6]). A general scheme of random censorship was considered
by authors includes an competing risks model and random censoring from both sides.

1. Mathematical model

Let Z be a real random variable (r.v.) with distribution function (d.f.) H(x)=P(Z<x), xeR. For
a fixed integer k>1 let AP, ..., A% be pairwise disjoint random events, and define the subdistribution func-
tions H(x;i)=P(Z<x,AV), ie3={1,..,k}. Suppose that when observing Z we are interested in the joint
behaviour of the pairs (2,A"), ie3. Let {(z;,A®,..., A), j=>1} be a sequence of independent replicas
of the (Z,AY,...,A%) defined on some probability space {Q, A,P}. We assume throughout that the func-
tions H(x),H(x;1),....H(x;k) are continuous. Let H,(x) denote the ordinary empirical d.f. of Z,,...,Z,

and introduce the empirical sub d.f. H, (x;i), ie 3
Hn(x;i)zﬁznl‘ﬁ(j”l(zj SX), (x;i)eRxS,
=
where R =[-o0;00], 8\ =1 (A}i)) is an indicator of event A" and
H, (1) +...+ Hn(X?k)=%Z| (Zj SX)z H,(x), xeR,

is the ordinary empirical d.f. Properties of many biometrical estimates depends on limit behaviours of pro-
posed empirical statistics.

The following results are a straightforward consequences of exponential inequality of Dvoretzky-
Kiefer-Wolfowits with exactly constant D = 2 from [7, 8]:

Forall n=12,... and ¢>0:

(1+¢) 1 v
P sup|Hn(x)—H(x)|>[ .ﬂ} <on ), (1)
[X|<c0 2 n
and
12
P sup|Hn(x;i)—H(x;i)|>2(@Io%j <4n~ o) )
‘X‘<oo
A crucial role is played the vector-valued empirical process
—k+1

fa, ()= (1), (1) (1), t=(t0t) <R

where

af]o)(x)zx/ﬁ(Hn(x)—H(x)), al (x) =\/ﬁ(Hn(x;i)—H(x;i)), ie3.

27



O6pabomka ungopmayuu | Data processing

The results of our approximation theorems presented here is, quite naturally, the approximation theo-
rems of Komlos—Major-Tusnady’s, for the ordinary empirical process with the approximation with the rate

of order n*?logn. We will construct the approximation Gaussian processes in terms of Wiener sequences.

The following theorem of Burke-Csorgé-Horvath [9, 10] is an extended analogue of Komlos—Major—
Tusnéady’s result [11, 12].

Theorem A [9, 10]. If the underlying probability space {Q,A,P} is rich enough, then one can

define k+1 sequences of Gaussian processes B\ (x),B”(x),..,B" (x) such that for a,(t) and

B, (1)=(B (%),BY (%), B (%)), t=(ty,-t, ), we have n

{e< a,(t)-B,(t) e >n7%(M(Iogn)+ Z)}S K exp(-Az), (3)

for all real z, where M =(2k +1)A, K=(2k+1)A, and L =A,/(2k+1) with A, A, and A, are absolute
constants. Moreover, B, itself is a (k-+1) dimensional vector-valued Gaussian process having the same

covariance structure as the vector a,(t), namely EB!(x)=0, (x,i)eRxJI=3Iu{0} and for any
ijed, i#], x,yeﬁ-
W (B (y)=min{H (x),H (y)} =H (x)-H (y),
()BS' (y)=min{H (x;i),H (y:i)} = H (i) H (y3i),
EB,(])(X)Br(,)(y)=—H(x;i)-H(y;j),

EBL” (x)BY (y)=min{H (x;i),H (y: i)}~ H (x)-H (y;i).

Note that in proving of theorem A (theorem 3.1 in [10]) authors constructed sequence of two —

(4)

parametrical Gaussian processes @(O)(x;n),@(z)(x;n),...,Q(k)(x;n) such that for a,(t) and
@(t;n)=(@(O)(x;n),...,(@(k)(x;n)), teR™ the following its Borel-Cantelly consequence of approxima-

tion have used
k+l as
( }/Iog nj

D
where Q(t;n) isthe (k +1) dimensional vector-valued Gaussian process that Q(t;n)=n"?a, (t). Hence

EQ" (xn)=0, (xi)eRxJ

an ()20

sup
te Rk+l

andforany i,je3, i#j, x,yeR:

EQ (xn)Q" (y;m)=min(n,m){min{H (x),H (y)} =H (x)H (y

~~—

3

E@(O)(x;n)Q(O)(y;m)zmin(n,m){min{H (x;i),H(y; )} H(x)H (y,l)} -
EQ“)(x;n)Q“)(y;m)zmin(n,m){min{H (x:1),H (y;i)}=H (xi)H (y; j)}
EQY (x;n)Q (y;m)=—min(n,m)H (xi)-H (y; ).
Observe that {Q(i),i € 5} are Kiefer processes and they satisfying the distributional equality
Q" (xn)=w " (H (xi)in)—H (i)W (L), (6)

i . . . . . i)
where {W v (yin), 0<y<ln>lie S} itself are two-parametrical Wiener processes with EW' (y;n)=0 and
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Ew" (y;n)Wm (u;m)=min(n,m)min(y,u), ie3.
It is important to note that though Kiefer processes {Q(”,i eS} are dependent processes, but corre-
sponding Wiener processes are independent. Indeed, from proof of theorem A are follows that
D

QY (xn)=K(H(x1);n),
@(2)(x;n)2K(H (x2)-H (+oo;1);n)— K(H (+oo;1);n),

Q(i)(x;n)iK(H(X;i)+H(+oo;1)~l—...+H(-l—oo;i—l);n)—K(H(+oo;1)+...+H(+oo;i—1);n), ie3,
where H (+o0;i)=limH (x;i), H(+o0;1)+...+H (+o0;k)=1.

X1 +o0

The Kiefer processes {K(y;n), 0<y<], n21} are represented through two-parametrical Wiener

processes {W(y; n), 0<y<i n 21} by distributional equality

{K(y;n), 0<y<\y, nzl}z{w(y;n)—yw(];n), 0<y<i, nzl}. (7)
Consequently, in view of (6) and (7) the Wiener process {W“),i € S} also admits representations for
all (X;i)eﬁxﬁ:
D

W (H (x1);n)=W (H (x;1);n),

W (H (x;2);n)2W(H (X;2)+ H (+00;1);n) =W (H (+00;1);n),

W(i)(H (x;i);n)iw (H (X;1)+H (+o0; —1);n)—W (H (+90;1) + ...+ H (+o0;1 —1);n).
Now by directly calculations of covariance of processes {W(i) e S} it is easy to believing on its independency.

This paper further structured as follows. In section 1 we introduce the classical Kac processes analogues
and their modifications. For its we prove approximation results. Then in section 2 we propose corresponding
estimators of hazard functions. For them we also prove approximation results.

2. Kac processes under general censoring

Authors [9] proved the general theorems to obtain approximation for the usual empirical and corre-
sponding cumulative hazard estimates by Gaussian processes for the competing risk generalizations. We
prove these results for a corresponding Kac-type processes.

Following of [12] we introduce the modified empirical d.f. of Kac by the following way. Along with

sequence {Zj, j 21} on a probability space {Q, AP} consider also a sequence {v,,n>1} of r.v.-s having
Poisson distribution with parameter Ev,=n, n=12,... Assume throughout that the two sequences

{Z i 21} and {v,,n>1} are independent. Kac’s empirical d.f. is
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while the empirical sub-d.f. one is

o Az sk Al e, i v, 2tas,
H, (xi)=<n43
0,ie3 if v,=0as,
with H) (x1)+...+ H (x;k)=H, (x) forall x e R. Here we suppose that sequence {v,,n>1} is independent
of random vectors {(Zj,S(jl) ..... S(jk)), j 21}, where 3! =|(A§i)). Note that statistics H, (x;i) (consequently

also H, (x)) are unbiased estimators of H (x;i), i € I (consequently also of H (x)):

E(H:(x;i))z%E{iE[igs) 1(z, gx)},vn :m}z

m=1 k=1
:%E{iE[igs) 1(Z <x) v, :m]P(vn :m)}:
m=1 k=1
1& > n"e™"
=EmZ=;H(x,|)mP(vn=m)=EH(x,|)mZ=‘1m- ——
=H(xi)e™ y n—:H(x;i), (xi)eRx3
m=0 m!

Consequently,

processes.
Theorem 1. If the underlying probability space {Q, A, P} is rich enough, then one can define k +1 se-

quences of Gaussian processes W' (x),W"” (x),..,w (x) such that for a:(t):(am)* (t,),a"" (t,),...al" (¢, ))

n n n n

and W, (t) =(Wn(°) (t,) WO (1), W (tk)), t=(ty,t,....t, ), we have

P{sup

teR

n

510w, (0 > Cn Hlogn <K, ®

where r>2 isan arbitrary integer, C" =C"(r)-depends only on r and K" is an absolute constant. Moreover,
W, (t) itself is a (k+1)-dimensional vector-valued Gaussian process with expectation EW."(x)=0,
(xi)eRxJ andforany i, je3, i#j, x,yeR:
EWS ()W, (y)=min{H (x),H (y)},
EWn(i)(x)Wn“)(y)zmin{H(x;i),H(y;j)}, (9)
EW (x)W (y)= min{H (x;i),H (y)}

The basic relation between a, (t) and a; (t) is the following easily checked identity

a,(x)= VF“aS‘n)(x)JrH(x;i)(V”_n), ie3 (10)

n

Hence the approximating sequence have respectively the form

W (x) =B (x)+H (x;i)W*(n), ie3,

“ &
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where Bﬁin)(x) is a Poisson indexed Brownian bridge type process of Teorem A and {W(*)(x), XZO} is
. —\ D - —

a Wiener process. Easy to verify that {Wn(')(x), (x;i)e RxS}:{W*(H (xi)).(x.i)e Rxs}. The proof of

Teorem 1 is coincides with the proof of theorem 1 of Stute in [13] hence it is omitted.

In so far as lim H, (x)=H, (+x) = Y0 then by Stirlings formula
X+ n

P(vn=n)=P(H;(+oo):1):nnr?!n:\/Zlm(lJro(l)), n — oo,
and
p(H;(+oo)>1):p(vn>n):§1”kke!”:o(l), n— oo,

Thus H, (x) with positive probability t, be greater than 1. In order to avoid these undesirable properties, we
propose following modifications of Kac statistics:
Ha(x)=1-(1-H; (x))1 (H; (x)<1), xeR,
Hn(x;i)zl—(l— H:(x;i))l (H:(x;i)<1), (x;i)e@xs.
The following inequalities are useful in investigating of Kac processes.
Theorem 2. Let {v,,n>1} be a sequence of Poisson r.v.-s with Ev, =n. Then for any ¢>0 such that

(11)

n,_ ¢ (12)
logn  8(1+¢/3)
we have
1(e V2
P - =| =nl <2n™™, 13
(|vn n|>2(2nognj j n (13)
logn ">
P[sup|H:(x;i)—H(x;i)|>2[822 ) Js4n“€W, ie3, (14)
‘X‘<rx}
logn\?
P[sup Hn(x;i)—H(x;i)‘>2[822 j Js4n4‘gw, e, (15)
‘X‘<oo

where w=[16(1+ e/3)]_1.
Proof. Let v,,v,,... be a sequence of Poisson r.v.-s with Ey, =1 for all k=1,2,... Then
k
n n 0 et
Sy =V, —v= Z(Vk -1 :Zak and  Eexp(tg,)=e"exp(ty,) :exp(—(t +1))Z% :exp{e‘ —(t +1)}'
k=1 k=1 k=0 H

Using Taylor expansion for e', we get

Eexp(tgk)zexp{ut +%+\y(t)—(t +1)}=exp{§+\|/(t)},

3
where \u(t)z%exp(et), 0<B<1. Estimate y(t) taking into account that t*<t® under 0<t<1:

3 2 2
\y(t)s%eSe%. Thus, Eexp(tgk)zexp{%(ng}, 0<t<1.

The following result (theorem from [14]) is necessary for our further investigations.
Lemma 1 [14]. Let {&,,n>1} be a sequence of independent r.v.-s with E§, =0, n=12,.... Sup-
pose that U,A,,..., A, positive real numbers such that
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Eexp(t&k)<exp( At ) for k=12,..,n [t|<U. (16)

Let A=X, +..+A,. Then

2

2exp L ,if 0<z<AU,
2A

P(le,+..+&|22)< y
2exp(—7z), if z>AU.

1/2

1/2
Letinlemmal A, =1+¢/3, U =1, z =%(§nlog n) , then we obtain (13). Here 0<z :%(%nlog nj <

<(1+e/3)n=AU. Consider probability in (14). By total probability formula

. elogn v
H (x:i)—H(xi)|>2 =
[iﬂgl x)-2 250 J

12
=P| sup|H, (x;i (x;i) +—ZS Z[SIOan /vn>n P(v,>n)
X<z ) Py} 2n
elogn "
+P| sup[H (x;i)- -= Z 8V1(2Z, <x) 2( g j /vn£n P(v, <n)<
[x|<eo NS 2n
12 max(n,v,) 12
.\ (€logn 1 (i (slognj
<PsuHX|HX|> + P| sup|— 01 (Z, <x)| > <
{x<g| (i) ( 2n ) J \x\<gnk:min%;vn)+1 Ma =) =,
_4e Vn - n| € Iog n v —4g —4we —4wg H ~
<2n 4+ P |> > <27 4207 <407 1e S,
n n

where we applied (2) and (13) that proves (14). Let’s define T" = inf {X: Hn (i) =1},i €3 If x>TY and

v, >n, then Ha(xi)=1and H (xi)—H(xi)>H (xi)—H, (xi)>0. Then assuming v, >n, we obtain

Ho (1)~ H (i) - {max[supw ()= H (x:i)], sup Hn(x;i)—H(x;i)H}s

sup

‘X‘<oo

X< T szg)

17)

s{max{ilimH:(X;i)—H (X;i)|,ilifl))|H:(x;i)—H (X;i)q}:

Under v, <n, itis obvious that Ha(x;i)=H,(xi), forall (xi)eRx3.
Now taking into account last two relations, total probability formula and (14) we obtain (15). Theo-
rem 2 is proved.

Let an(t):(aﬁo)(to),a(nl)(tl),...,aqu)(tk)), where a(no)(x)zx/ﬁ(Hn(x)—H(x)), a(ni)(x)zx/ﬁ(Hn(x;i)—

-H (x; |)) (x; i) eRx 3. We shall prove an approximation theorem of the vector-valued modified empirical

(xi)-H (x;i)|, ied.

‘X‘<oo

Kac process an (t) by the appropriate Gaussian vector-valued process W, (t),t cR"™ from theorem 2.
Theorem 3. Let {T,,n>1} be a numerical sequence satisfying, for each n, the condition
T, <T, =inf {x:H(x)=1} <oo such that
12
m[n{P(A('))—H(Tn,i)}zl—H(Tn)zz(HOgn] . (18)

ie3 2wn
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If for any £>0 condition (12) hold, then on a probability space of theorem 2 one can define k +1 sequences
of mean zero Gaussian processes W,”) (x),Wn(l) (x),...,Wn(k) (x) with the covariance structure (9) such that for

an (t) and W, (t) = (W, (1), W, (). W, (1)) we have

n
P< sup
te(—o;T, [

where K is an absolute constant, C =C(e) and B =min(r,ew) forany £>0.
Proof. It is easy to seen that probability in (19) can be estimated by sum

k i .
P{sup a, (x)-W.© (x)‘ >Cn ™ log n} +> P(sup ay (x)-w (x)‘ >Cn ™ log nj =Qy, +0,,. (20)
X<T, i=1 X<T,

Taking into account that for any x<T,, H,(x)<H,(T,) and if H (T,)<1, then ay’ (x)= afqo)*(x) and by
formula of total probability

(k+1)

an (t)-W, (t)

>Cn? log n} <Kn™P, (19)

0, < P[sup

X<T,

a(no)(x)—Wn(o)(x)‘ >Cn 2 log n/Hn*( J )>1)<

< P(sup

X<T,

al% (x)-W,* (x )‘>Cn ylogn}rP( )>1)<
(21)
T

<K +P(H,(T,)-H(T,)>1-H(T,))<

<Kn‘r+P{sup|H H(X)|>(rlognJ Js Ln™",

[x|<0 2wn

where we have used theorem 1 and analogue of (14) for H; —H, L=K" +4. Analogously,
k ) K -
Z (SUp Wn(')(x)‘ >Cn 2 log nj+ZP(H:(Tn;i) S p(Am))S
x<T, -
W (x )‘ >Cn2 Iogn}LZP(sup

‘X‘<oo

+kP(|V v, 2(‘”"’"”) J<k|_n-f+2kn-‘”,

k
<> P(sup

= x<T,

" (x )—Wn(i)(x)‘ >Cnlog nj+ (22)

n 2wn

where we also have used inequalities (13), (15) and theorem 1. Now from (21) and (22) follows (19). Theo-
rem 3 is proved.

3. Estimation of hazard function

In many practical situations, when we are interested in the joint behaviors of the pairs
{(Z,A(i)), ieS}, a crucial role is played by the so-called cumulative hazard functions
. . . X
{S(')(x)zexp(—z\(')(x)), ieS}, where A" (x) is the i-th hazard function ( [ = | J:
—0 (—o0ix]
B ]5 dH (u;i)

S 1-H(u) ’

with A® (x)+...+ Al (x):A(x):J dHH(;J)) is the corresponding hazard function of d.f. H (x).
—H(u
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Consider two important special cases of considered generalized censorship model:
a) Let {X,,X,,...} be a sequence of independent r.v.-s with common continuous d.f. F. These are

censored on the right by {Y,,Y,,...} a sequence of independent r.v.-s, independent of the X — sequence, with
common continuous d.f. G. One can only observe the sequence of pairs {(Zk,Sk),kzl,_n}, where

Zj:min(xj,Yj) and 5,=8" is the indicator of event AJ.:AE”:{ZJ.:XJ.}. In this case

k=2, 1-H(x)=(1-F(x))(1-G(x)), H(x;l)zjo(l—G(u))dF(u), thus  S®(x)=5(x)=1-F(x).

The useful special case when 1—G(x)=(1— F(x))ﬁ, B >0, which corresponds to independence of r.v.-s
Z;and 3;,j>1.

b) For k>1 consider independent sequences {Yl(i),Yz“),...} (i =1,...,k) of independent r.v.-s with
common continuous d.f. F and let Z, = min(Yj(l),...,Yj(k)). One observes the sequences {(Zj,és(ji)),i =1,_k} ,
j=1

where 8\ is the indicator of the event A}”:{zj =Yj(‘)}. This is the competing risks model with

sU(x)=1-FY(x), ie%.
Define the natural Kac-type estimator

of AY(x), ie3. Let WS)(x)=\/ﬁ(AS)(x)—A(i)(x)), ie3 is an Kac-type hazard process and
W, (1) = (W (&), Wi (1)), t= (Lt )y Yo () =(Y,? (1), Y (t,)) corresponding vector process with

0 () «WO (u)dH (u;i)+ w(x) ~ «W (u)dH (u) -
R T TR e

and {W(O)(x),w(”(x) ..... Wn(k)(x)} are Wiener processes with the covariance structure (9). Then for

EYV (x)YO (y)=C(x,y),
where X,y <T, =inf {x:H(x)=1} <o,
n>

Theorem 4. Let {T_,n>1} be a numerical sequence satisfying for each n, the condition T, <T,, such

that
2 2
L>max{32 W, —n 2rb, Zgb } (23)
logn w
where b, =(1-H(T, ))_1, £>0, r>2. Then on a probability space of theorem 2
P( sup [w, (t)-Y, (t)||(k) > r(n)j <kd,n?, (24)
te(—oo;T, ]k)
where r(n)=d.b?n*?logn, ®,=d,(e,r), @, - (absolute) constants.
Proof. It is enough to prove that for each i€ J
P(sup(wﬁi)(x)—Yn“)(x)) > r(n)jsqnlnﬁ. (25)
X<T,
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For difference we have representation for each i € 3:

W ()= YO (x) = N _
" ()= (0= W) ()
_i(ag')(u)—wn(')(u JoH ] ()] ok (ui) )

L3 (1-H(u)) S (1=H (u)) (1-Ha(u))

(0) (i)
b ardal W) &g
J;(l—H(u))(l—Hn(u)) ;R”()

For sum RY (x)+R.) (x)+R. (x) using (15) and (19) we have

4 .
P(sup > RY(x)|>3Cn*logn +en™"*b; log nj£3Kn“‘ +2Ln™" §(3K +2L)n‘ﬁ, ie3. (26)
XSTn m=1
Rewrite R\ as
© () : , _
_ X (an (u)) d(H (u;i)—H (u;i) x o) (1) _a —
9= L e ) ) R,

% (1—H(u)2(1—Hn(u)) % (1-H () .
Then by (15) for ie 3
ﬁ&'ﬂ(x)

P(sup > 2en b’ log nJ <2Ln™™<2Ln (28)

X<T,

There exists an absolute constant A such that

X<T,

P(sup Rl (x)‘ >3An"*b? log n] <P(H,(T,)>1)+

(29)

+P| supn™¥? j'

u
3An"Y2p?| <Ln™" ,
S AT I B

so that for any x<T,,H (x)<H (T,) and if H,(T,)<1 then H,(xi)<H,(T,) and hence

ay (x)=al""(x) for ie3. It is enough to estimate probability p,. According to proof of theorem 1 in [13],

supposing a” (x) = /v, (H: (x)=H(x)), a(x)=\lv, (H. (xi)—H(xi)), ie3 and using representa-
tion (10), we have proved the theorem 4.

Conclusion

We consider Kac processes in a general censorship scheme, including competing risks model and ran-
dom censoring from both sides. Our results uses strong approximation method. Cumulative hazard processes
also investigated in a similar manner in the general setting. In paper we obtain corresponding approximation
results for ordinary empirical processes, for a Kac processes and their modifications and for hazard processes.

All results are new and have approximation rates of order n™* logn.
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