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Abstract. We consider the class of all homeomorphisms between the function spaces of
the form Cp(X), Cp(Y) such that the images of Y and X under their dual and, respectively,
inverse dual mappings consist of finitely supported functionals. We prove that if
a homeomorphism belongs to this class, then Lindel6f numbers 1(X) and 1(Y) are equal.
This result generalizes the known theorem of A. Bouziad for linear homeomorphisms of
function spaces.
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AnHoTauus. A. By3uan jgokasan, 4To eciu npoctpaHcTBa HenpepbiBHBIX (yHKiwmit Cp(X),
Cp(Y) nuneitno romeomopdusl, To uncna Jlungenéda npocrpancts X, Y paBHbl. B man-
HOM CTaThe ITOT Pe3yJIbTAaT PACIPOCTPaHsieTCst Ha GoJee MIHPOKUH KIIacc ToMeoMophu3-
MOB MpocTpaHcTB QyHKUMMA. JIIst 5TOro BBOAATCS B PACCMOTPEHHE CIICUUAbHbIE O[]
HPOCTPAHCTBA B MPOCTPAHCTBAX (PYHKI[MOHAIOB C KOHEUHBIM HOCHUTEJIEM, KOTOPBIC TEM
HE MEHee CTPOro IIUpe MPOCTPAHCTB JMHEWHBIX HENpepbIBHBIX (yHKIMOHATOB. [lanee
paccmarpuBaetcs Kiace Takux romeomopguszmos h mpocrpancts Cp(X), Cp(Y), uro ob6pas
Y npu conpsskeHHOM K h oToGpaxkeHnu u o6pa3 X Mpu O0TOOPaXKEHHH, COMPSHKEHHOM
K oToGpaxkennio hl, comepkatcst B pacCMOTPEHHBIX MOAMPOCTPAHCTBAX (DYHKIMOHATIOB.
VYuTBIBas, YTO TH MOANPOCTPAHCTBA CTPOTO IIHPE NMPOCTPAHCTBA JIMHEIHHBIX HEMpephIB-
HBIX (DYHKI[MOHAJIOB, HPUXOIUM K 3aKITFOUECHHUIO, YTO BBEJCHHBIN KJIacC roMeoMopdi3MoB
CTpOro IIMpe Kiacca JMHEHHbIX romeoMopdismoB. J{okaszaHo, 4to TexHuka A. Bysuana
MOXeT OBbITh IPUMEHEHA K 3TOMY Kiaccy roMmeoMopdusmoB. Takum 00pa3oM, yCTaHOBIIE-
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HO, 4to ecnu npoctpancTa Cp(X), Cp(Y) romeomMopdHsl, U romeoMopdusM HpHHAIIC-
XKHT K paccMaTpuBaeMoMy Kiaccy, To yucna Jinnnenéda npocrpancts X, Y paBHBI.
KiroueBble cioBa: uyucno Jluanenéda, mpocTpaHcTBO (PYHKILUH, TOMONOTHS MOTOYEY-
HOHM CXOJMMOCTH, CBOHCTBO KOHEYHOTO HOCHUTEIIS

Jas uurupoBanus: Jlazapes B.P. O0 ogHoM Kiacce roMeoMOp(U3MOB MPOCTPAHCTB
Gbyukuuit, coxpansiomem uucio Jlungenépa obnacreit onpenenenus // Bectauk Tom-
CKOI0 TOCYIapCTBEHHOIO YyHHMBepcuTeTra. MaremaThka M MexaHuka. 2023. Ne 86.
C. 159-166. doi: 10.17223/19988621/86/12

Introduction
We assume all topological spaces under consideration to be Tykhonoff and call
them simply “spaces.” For each space X, let C,(X) be the set of continuous real-

valued functions on X with the topology of pointwise convergence. It means that a
basic neighborhood W (¢, K,e) of any function ¢eCp(X) consists of functions

y € Cp(X) such that |p(x) —y(x)| <& for each point x of a finite subset K < X .
A. Bouziad proved [1] that if two function spaces C,(X), C,(Y) are linearly homeo-

morphic, then the Lindel6f numbers [(X), I1(Y) of X, Y are equal. For the prehistory

of this result, the reader may refer to the rather complete survey in the same article [1].
In addition, we just note the interesting partial results of A.V. Arbit [2, 3], concerning
uniform homeomorphisms of function spaces.

In this paper, we describe some class # of homeomorphisms h:C,(X) - Cp(Y)

such that 1(X)=1(Y) whenever heH . This class H, by its definition, is wider than

the class of linear homeomorphisms. Hence we obtain a generalization of the above-
mentioned result of A. Bouziad.

We denote by Cgcp(X) the subspace in Cp(Cp(x)) consisting of all continuous

functions f :Cp(X) — R such that f(ox)=0, where 0% is zero-function on X.

In what follows, we identify each space X with its image under natural homeomorphic
embedding 6: X —>C3Cp(X) defined by the rule O(x)(¢)=o(x), where xe X,

¢ €Cp(X). Recall that for each continuous mapping h:C,(X) —C,(Y) such that
h(OX)=OY its dual mapping h*:C%CP(Y)%Cng(X) is defined by the rule
h*()(@) =(fh)(e) = f(h(9)).

1. Finitely supported functionals on Cp(X)

Definition 1.1. A function f e Cng(X) is said to be a finitely supported func-

tional (briefly, FSF) if there exists a finite (may be empty) subset K — X such that the
pair (f,K) satisfies the following two conditions:
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(i) For each £ >0 and each ¢ e Cp(X), there exists & >0 such that

f(W(p.K,8)) = (f(o)-e f(@)+e);
(if) There exists gy >0 such that for each x € K and for each its open neighbor-
hood U, one can find functions ¢,y €C,(X) which coincide out of U, but
|f (px) - f(\llx)| > €.

If conditions (i), (ii) hold then we say that K is the (finite) support of f and we write
K=suppf .

Definition 1.2. We write f e ﬁp(X) if f is an FSF with the following additional

properties:
(iii) If f(p) =0, then there exists ny € N such that for all integer n>ny holds

[f(n o) >1;

(iv) If | f (n- )| >1for some neN then f(¢) #0.

Remark 1.3. The denotation I:p(X) is motivated by the fact that each linear con-
tinuous functional f =21X +...+An(f)Xn(s) € Lp(X) satisfies mentioned conditions
(1) = (iv) with K ={X,..., Xa()}-

Proposition 1.4. (a) suppf = iff f
(b) The set supp f is unique for each FSF f;
(©) If ¢,y €C,(X) and o(x) = y(x) foreach xesuppf then f ()= f(y);

_ G,

(d) The mapping s: ﬁp(X)—>x , S(f)=suppf is a well-defined finite-valued
lower semicontinuous function.

Proof. We obviously have (i) = (a), (i) = (c).

(b) Let f e Cgcp(X), f = OCP(X) and there exist two different finite subsets K,
M in X satisfying conditions (i) and (ii). Let, for example, x5 € K\M . Take any
neighborhood Uy of x; with Ug n((KUM)\{xy})=@. Since K =suppf , by (ii)
there exist two functions ¢g,ygeCpy(X) coinciding out of Uy such that
|f(00)— f(wo)|>¢o >0. At the same time, M =suppf as well, @y coincides with

ygo on M, and now (c) implies f(pq) = f(yq) , a contradiction.
(d) Evidently only the lower semicontinuity needs to be proved. Take an arbitrary
open set G X and let suppf NG = for some FSF f. Choose a disjoin family

of neighborhoods U, of points x esuppf such that U, «c G for each xesuppf .
Fix the functions ¢,y existing by (ii) for each point x esupp f and its neighbor-
hood U, . Put

w= [ {gel(¥):|a(ox)-0a(wx) >0} (2)

xesupp f
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It is easy to prove that W is open set in ﬁp(X), containing f. Moreover, if g
is FSF and suppg NG =, then for any xesuppf and for all zesuppg we have
Ox(2) =yy(2)=0. Hence g(¢y)=9(wyx)=0 and geW. Thus feWc
c{g:suppg NG =T} . M

Remark 1.5. Formula (2.2) in [4] is incorrect. It must be in form (1).

2. Main result

At first let us define the class H of homeomorphisms, mentioned in the introduc-
tion.
Definition 2.1. Define the class H to be consisting of all homeomorphisms

h:Cp(X)—>Cp(Y) such that h(OX):OY and for all xe X and yeY their images

(h_l) (x) and h*(y) arein L,(Y) and L, (X), respectively.
Remark 2.2. It follows from Theorem 3.1 in [5] that, in particular, there exists
a homeomorphism h:C ([ o]) - Cp([L, o®]), heH, but these function spaces are

not linearly homeomaorphic (see [6]).
Our main result is
Theorem 2.3. Let h:C,(X) > C,(Y), he™ . Then I(X)=I(Y).

A.V. Osipov in [7] gave such a characterization of the Lindelof property.
Theorem 2.4. ([7], Theorem 3.7) A space X is Lindelof iff the function space
Cp(X) has the following property:

Each 1-dense setin C,(X) contains a countable 1-dense subset. (2)

Recall that a set Ac C,(X) is said to be 1-dense if AnW(f,{x},&) =< for each
f eCp(X),each xe X ,and £>0. By Theorem 2.3 we have such

Corollary 2.5. Let h: Cp(X) — Cp(Y) , heH and Cp(X) satisfies (2). Then
Cp(Y) satisfies (2) as well.

To prove the Theorem 2.3 it certainly suffices to establish only the following

Lemma 26. Let +t be an (infinite) cardinal, a homeomorphism
h:C,(X)—>Cp(Y) belongsto H and I(Y)<<t.Then I(X)<<.

We prove this Lemma following the same pattern as in [1], but we shall need a new
definition of extractor.

For an arbitrary homeomorphism h:C,(X) —C,(Y), heH, define the mappings

s:Y 52X ¢ X o2 by the rules s(y) =supp(h*(y)) , S'(X) =supp((hl) (x)j.
First, we prove the surjectivity of s.

Proposition 2.7. The mapping s is a well-defined finite-valued lower semicontinu-
ous surjective function.
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Proof. All the statements are evident but surjectivity. Assume that there is a point
Xg € X \s(Y) . Consequently, X, ¢S = u{supp(h*(y)): ye supp((h‘l) (XO)J} . Choose

a function @y € Cpp(X) with @g|s =0, @g(X)=1. By item (c) of Proposition 1.4 we

have " (y)(¢g)=h(gg)(y) =0 for each y e supp[(h‘l)* (xO)] . Applying (c) again,

we obtain
(7 06) o)) = o (n(00))) = 5 0) =90 30) =0

a contradiction. H
Let the symbol Ty denote the topology of the space X. For each y Y and each
0, xeVns(y)

. v v \
V ety put rV(y)=‘h (y)((py)‘,where ¢y €Cp(X), (py(X)={1’ XeV

Alsoput G:ty — 2", G(V) ={y ey (y) =‘h*(y)((p\§ )‘ =O} .
Recall the basic definition from [1]:
Definition 2.8. Given multivalued lower semicontinuous function n:Y — 2% any
mapping G:tyx — 2" is said to be n -extractor if the following three conditions hold:
(e1) For each open U = X we have n*(U)={yeY in(y)cU}<=GU);
) IfuUVery,UcV,and yeGV)\GU) then n(y)n(V\U) =#J;

(€3) If asequence (Uy) _ ©7x, Uy ©Up,q issuchthat Y < Upey (MnznGUn))

neN
then X cUpenUp -

So, we now must check the conditions (el), (e2), (e3) for n=s.

Proposition 2.9. The function s and mapping G satisfy conditions (el), (€2), (€3).

Proof. Let V be an open subset in X and y €Y issuchthat s(y) =V (i.e., yes (V)).
Then (p\)/, (s(y)) ={0} . Consequently, by 1.4 (c), h*(y)((p\§ ) =0,ie, yeG() and (el)

holds.
Now take any U,V e ty, suchthat U cV and ye G(V)\G(). Since y ¢ G(U)

then h*(y)((plj);to and we have s(y)ZU by definition of the function (plj.
The assumption s(y)nV =& implies cp\{, |S(y) ElE(pLj |s(y) . Therefore, by 1.4 (c)

again, h*(y)((p\{,):h*(y)(mtj)io, a contradiction with yeG(V). The item (e2)

is proved.
Let us verify (e3). Let us suppose that (e3) is not true and Xy € X \(UpenUy ) - In-

clusion Y < Upe (MmsnGWUp,)) implies that there exists some k e Nsuch that
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s'(xg) = G(Uy) . Hence, h*(y)((ptjk ):O for each y es’(Xp). Consider the function

1, XEX\Uk

. Evidently we have Xy)=1 and
0, xes(s'(xg)) NUy y ¢(%)

9eCp(X), (P(X)Z{

¢
h*(y)((pLy’k):h*(y)((p):h((p)(y):o. It means that h(¢)[sx,) =0 and therefore

S(y)z(p';'k|s(y) for any yes'(xg). It follows from this that

(h—l) (%0)(n(9)) = ¢(¥o) = 0 . This contradiction finishes the proof. B

We need the next two lemmas to show, using the terminology of [1], that the
s-extractor G is synchronized with the Lindel6f number of Y. The Lemmas 10 and 11
below are an adaptation of the lemmas 6 and 7 from [1] to our nonlinear situation.

Recall that an open subset V < X is said to be adequate (see [1]) if some its de-

composition V = u{Fk ke N} in increasing sequence of zero-sets F, has the property
that for each k e N there exist y, Y with s(y, )<V and s(yx )\F =D .

Lemma 2.10. Let | be an infinite set of cardinality |I|=t>¥g, and let
Y :{V- e I} be some family of adequate open subsets in X, which is stable under
taking finite unions. Put V =uy. Then F(V) isa F_-setinY.

Proof. For each V; ey fix its decomposition (Fk')k N and for each keN fix
€

a function nL € C,(X), which is equal to zero on Fk' and equal tok outof V; . If yeY ,
s(y) < V;, and k e N then put
<1} ,

UL(y)=ﬂ{y'eY:‘h[n‘. ij(yv
]+ky
where ki, = min{k 1s(y) < Fk'} . Of course, U|i<(y) is open neighborhood of y because

j<k

the functions h[nij
y

J are continuous on Y and are equal to zero aty (j=1,2,..k).

Put
A= ﬂ U{UIL(Y)3S(Y)CVi}, Bi={yeY:s(y)n(V\V))=Q}, A= (A UB).

keN iel
All sets Aclearly are Gg-sets. All sets B; are Gg-sets as well. Indeed, since
the mapping s is finite-valued and lower semicontinuous, then we have

B =) {er :s(y)m(V\Fki);&Q} . Let us show that F(V) =Y \ A,
keN

Take any y e F(V). It means that h*(y)((p\)/, ) #0. In addition, since the set s(y)

is finite, there exists i e | such that s(y) "V cV;. Therefore, y ¢ B;. Moreover, ap-
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plying the item (iii) from Definition 1.2, one can find a keN such that

s(y)nV c Fni cV; and ‘h*(y)(nmp\)’, )‘ >1 for all n>k . Let us note that in this case

sty) T‘Hs(y)

clude that h*(y)(n«p\{,):h*(y)(nh) for all n>k. We are going to show that

yeU{Uf((z):s(z)cVi}.
Let s(z)cV;. Then we have by item (iii) from Definition 1.2 that

h*(Y)(ﬂLmiz):h*(Y)(<k+niz)'<P\§)21- This inequality means that yeU}(2).

we have (n-(p\§) for all n>k . By item (c) of Proposition 1.4 we con-

Therefore, y ¢ A; and, consequently, y ¢ A. The inclusion F(V) <Y \ A is true.
Let us check the inverse inclusion. Take y¢ A and let iel be such that
y ¢ A, UB;. We can suppose by adequateness of V; that for each k € N there exists

Yk €Y such that s(y,)<V; and s(yk)\Fki #. Since y ¢ B;, then s(y)nV cV;.
Fix any peN such that s(y)nV < Fri, cV;. Since y ¢ A, there exists me N such

that y eU{U,in(z) :s(2) cvi}. Choose z such that s(z)\F[i) # . Then niZ >p and

(1 |0 g )

It follows from the definition of the functions n:+ni , (p\)// and from inclusions

there exists | <m such that

s(y)nV <Ry R | <V that ((l +niz)-<p\§ )L(y) =n ( ).Therefore, using again
4 Z g y

W)y =0 ((1+nt)-oy )|

Now we can conclude by item (iv) from Definition 1.2 that h*(y)((p\)/,);éo and

yeFV). 1

For an arbitrary family &/ of sets, we denote by U’ the family of unions of all
at most countable subfamilies of Z/ . Denote by £ the family of all F_-subsets of Y,
and let B be a base of topology of X consisting of cozero-sets.

The proof of the next lemma is the same as in [1], Lemma 7, and by this reason we
omit it.

Lemma 2.11. Let t be an infinite cardinal, &/ < B be an open non <t -trivial cover
of X. Then, for any subfamily y =/ with |y|<t, there exists a subfamily y' </’

the item (c) of Proposition 1.4, we obtain 1<

which is stable under finite unions, consisting of adequate sets, has a cardinality |y| <t,
and satisfies Uy c Uy’ .
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Proof of Lemma 2.6. If 1(Y) <, then, certainly, 1(Z) <t foreach Z =2, n..nZ,,,
where neN, Z4,...,Z, € £. Now, combining Lemma 2.11 and Lemma 2.10, we can
conclude that for each open non t-trivial cover &/ < B of X and for each subfamily
yc U with |y| <t there exists a subfamily uc ¢ with |u|<t such that Uy cup
and F(up) e L. Indeed, apply Lemma 2.10 to the family p of elements of &/ , which

belong to at most countable subfamilies of &/ forming elements of the family y' from

Lemma 2.11.
By Proposition 2.7, we have a finite-valued lower semicontinuous mapping

s:Y - 2% with nonempty values s(y) (see 1.4, (a)). Thus, all conditions of Proposi-
tion 3 from [1] holds. Consequently, I(X)<t. R
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