2023 Математика и механика

Tomsk State University Journal of Mathematics and Mechanics

MSC 54C35

Nº 86

Original article UDK 515.12

doi: 10.17223/19988621/86/12

On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains

Vadim R. Lazarev

Tomsk State University, Tomsk, Russian Federation, lazarev@math.tsu.ru

Abstract. We consider the class of all homeomorphisms between the function spaces of the form $C_P(X)$, $C_P(Y)$ such that the images of Y and X under their dual and, respectively, inverse dual mappings consist of finitely supported functionals. We prove that if a homeomorphism belongs to this class, then Lindelöf numbers I(X) and I(Y) are equal. This result generalizes the known theorem of A. Bouziad for linear homeomorphisms of function spaces.

Keywords: Lindelöf number, function space, pointwise convergence topology, finite support property

For citation: Lazarev, V.R. (2023) On a class of homeomorphisms of function spaces preserving the Lindelöf number of domains. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics*. 86. pp. 159–166. doi: 10.17223/19988621/86/12

Научная статья

Об одном классе гомеоморфизмов пространств функций, сохраняющем число Линделёфа областей определения

Вадим Ремирович Лазарев

Томский государственный университет, Томск, Россия, lazarev@math.tsu.ru

Аннотация. А. Бузиад доказал, что если пространства непрерывных функций $C_p(X)$, $C_p(Y)$ линейно гомеоморфны, то числа Линделёфа пространств X, Y равны. В данной статье этот результат распространяется на более широкий класс гомеоморфизмов пространств функций. Для этого вводятся в рассмотрение специальные подпространства в пространствах функционалов с конечным носителем, которые тем не менее строго шире пространств линейных непрерывных функционалов. Далее рассматривается класс таких гомеоморфизмов h пространств $C_p(X)$, $C_p(Y)$, что образ Y при сопряженном к h отображении и образ X при отображении, сопряженном к отображению h^{-1} , содержатся в рассмотренных подпространствах функционалов. Учитывая, что эти подпространства строго шире пространства линейных непрерывных функционалов, приходим к заключению, что введенный класс гомеоморфизмов строго шире класса линейных гомеоморфизмов. Доказано, что техника A. Бузиада может быть применена к этому классу гомеоморфизмов. Таким образом, установле-

но, что если пространства $C_p(X)$, $C_p(Y)$ гомеоморфны, и гомеоморфизм принадлежит к рассматриваемому классу, то числа Линделёфа пространств X, Y равны. **Ключевые слова:** число Линделёфа, пространство функций, топология поточечной сходимости, свойство конечного носителя

Для цитирования: Лазарев В.Р. Об одном классе гомеоморфизмов пространств функций, сохраняющем число Линделёфа областей определения // Вестник Томского государственного университета. Математика и механика. 2023. № 86. С. 159–166. doi: 10.17223/19988621/86/12

Introduction

We assume all topological spaces under consideration to be Tykhonoff and call them simply "spaces." For each space X, let $C_p(X)$ be the set of continuous real-valued functions on X with the topology of pointwise convergence. It means that a basic neighborhood $W(\varphi,K,\varepsilon)$ of any function $\varphi \in C_p(X)$ consists of functions $\psi \in C_p(X)$ such that $|\varphi(x) - \psi(x)| < \varepsilon$ for each point x of a finite subset $K \subset X$.

A. Bouziad proved [1] that if two function spaces $C_p(X)$, $C_p(Y)$ are linearly homeomorphic, then the Lindelöf numbers l(X), l(Y) of X, Y are equal. For the prehistory of this result, the reader may refer to the rather complete survey in the same article [1]. In addition, we just note the interesting partial results of A.V. Arbit [2, 3], concerning uniform homeomorphisms of function spaces.

In this paper, we describe some class $\mathcal H$ of homeomorphisms $h:C_p(X)\to C_p(Y)$ such that l(X)=l(Y) whenever $h\in\mathcal H$. This class $\mathcal H$, by its definition, is wider than the class of linear homeomorphisms. Hence we obtain a generalization of the abovementioned result of A. Bouziad.

We denote by $C_p^0C_p(X)$ the subspace in $C_p\!\left(C_p(X)\right)$ consisting of all continuous functions $f:C_p(X)\to\mathbb{R}$ such that $f\left(0^X\right)=0$, where 0^X is zero-function on X. In what follows, we identify each space X with its image under natural homeomorphic embedding $\theta:X\to C_p^0C_p(X)$ defined by the rule $\theta(x)(\phi)=\phi(x)$, where $x\in X$, $\phi\in C_p(X)$. Recall that for each continuous mapping $h:C_p(X)\to C_p(Y)$ such that $h\left(0^X\right)=0^Y$ its dual mapping $h^*:C_p^0C_p(Y)\to C_p^0C_p(X)$ is defined by the rule $h^*(f)(\phi)=(f\circ h)(\phi)=f(h(\phi))$.

1. Finitely supported functionals on $C_p(X)$

Definition 1.1. A function $f \in C_p^0 C_p(X)$ is said to be a finitely supported functional (briefly, FSF) if there exists a finite (may be empty) subset $K \subset X$ such that the pair (f, K) satisfies the following two conditions:

(i) For each $\varepsilon > 0$ and each $\varphi \in C_n(X)$, there exists $\delta > 0$ such that

$$f(W(\varphi, K, \delta)) \subset (f(\varphi) - \varepsilon; f(\varphi) + \varepsilon);$$

(ii) There exists $\varepsilon_0 > 0$ such that for each $x \in K$ and for each its open neighborhood U_x one can find functions $\varphi_x, \psi_x \in C_p(X)$ which coincide out of U_x but $\left| f(\varphi_x) - f(\psi_x) \right| > \varepsilon_0$.

If conditions (i), (ii) hold then we say that K is the (finite) support of f and we write $K = \operatorname{supp} f$.

Definition 1.2. We write $f \in \hat{L}_p(X)$ if f is an FSF with the following additional properties:

- (iii) If $f(\varphi) \neq 0$, then there exists $n_0 \in \mathbb{N}$ such that for all integer $n \geq n_0$ holds $|f(n \cdot \varphi)| \geq 1$;
 - (iv) If $|f(n \cdot \varphi)| \ge 1$ for some $n \in \mathbb{N}$ then $f(\varphi) \ne 0$.

Remark 1.3. The denotation $\hat{L}_p(X)$ is motivated by the fact that each linear continuous functional $f = \lambda_1 x_1 + ... + \lambda_{n(f)} x_{n(f)} \in L_p(X)$ satisfies mentioned conditions (i) – (iv) with $K = \{x_1, ..., x_{n(f)}\}$.

Proposition 1.4. (a) supp $f = \emptyset$ iff $f = 0^{C_p(X)}$;

- (b) The set supp f is unique for each FSF f;
- (c) If $\varphi, \psi \in C_p(X)$ and $\varphi(x) = \psi(x)$ for each $x \in \text{supp } f$ then $f(\varphi) = f(\psi)$;
- (d) The mapping $s:\hat{L}_p(X)\to X$, $s(f)=\mathrm{supp}\, f$ is a well-defined finite-valued lower semicontinuous function.

Proof. We obviously have (i) \Rightarrow (a), (i) \Rightarrow (c).

- (b) Let $f \in C_p^0 C_p(X)$, $f \neq 0^{C_p(X)}$ and there exist two different finite subsets K, M in X satisfying conditions (i) and (ii). Let, for example, $x_0 \in K \setminus M$. Take any neighborhood U_0 of x_0 with $U_0 \cap \left((K \cup M) \setminus \left\{x_0\right\}\right) = \emptyset$. Since $K = \operatorname{supp} f$, by (ii) there exist two functions $\phi_0, \psi_0 \in C_p(X)$ coinciding out of U_0 such that $\left|f(\phi_0) f(\psi_0)\right| > \varepsilon_0 > 0$. At the same time, $M = \operatorname{supp} f$ as well, ϕ_0 coincides with ψ_0 on M, and now (c) implies $f(\phi_0) = f(\psi_0)$, a contradiction.
- (d) Evidently only the lower semicontinuity needs to be proved. Take an arbitrary open set $G \subset X$ and let $\operatorname{supp} f \cap G \neq \varnothing$ for some FSF f. Choose a disjoin family of neighborhoods U_x of points $x \in \operatorname{supp} f$ such that $U_x \subset G$ for each $x \in \operatorname{supp} f$. Fix the functions ϕ_x, ψ_x existing by (ii) for each point $x \in \operatorname{supp} f$ and its neighborhood U_x . Put

$$W = \bigcap_{x \in \text{supp } f} \left\{ g \in \hat{L}_p(X) : \left| g\left(\varphi_x\right) - g\left(\psi_x\right) \right| > \varepsilon_0 \right\}. \tag{1}$$

It is easy to prove that W is open set in $\hat{L}_p(X)$, containing f. Moreover, if g is FSF and $\operatorname{supp} g \cap G = \varnothing$, then for any $x \in \operatorname{supp} f$ and for all $z \in \operatorname{supp} g$ we have $\varphi_x(z) = \psi_x(z) = 0$. Hence $g(\varphi_x) = g(\psi_x) = 0$ and $g \notin W$. Thus $f \in W \subset \subset \{g : \operatorname{supp} g \cap G \neq \varnothing\}$.

Remark 1.5. Formula (2.2) in [4] is incorrect. It must be in form (1).

2. Main result

At first let us define the class \mathcal{H} of homeomorphisms, mentioned in the introduction.

Definition 2.1. Define the class \mathcal{H} to be consisting of all homeomorphisms $h: C_p(X) \to C_p(Y)$ such that $h\left(0^X\right) = 0^Y$ and for all $x \in X$ and $y \in Y$ their images $\left(h^{-1}\right)^*(x)$ and $h^*(y)$ are in $\hat{L}_p(Y)$ and $\hat{L}_p(X)$, respectively.

Remark 2.2. It follows from Theorem 3.1 in [5] that, in particular, there exists a homeomorphism $h: C_p([1,\omega]) \to C_p([1,\omega^{\omega}])$, $h \in \mathcal{H}$, but these function spaces are not linearly homeomorphic (see [6]).

Our main result is

Theorem 2.3. Let $h: C_p(X) \to C_p(Y)$, $h \in \mathcal{H}$. Then l(X) = l(Y).

A.V. Osipov in [7] gave such a characterization of the Lindelöf property.

Theorem 2.4. ([7], Theorem 3.7) A space X is Lindelöf iff the function space $C_p(X)$ has the following property:

Each 1-dense set in
$$C_p(X)$$
 contains a countable 1-dense subset. (2)

Recall that a set $A \subset C_p(X)$ is said to be 1-dense if $A \cap W(f, \{x\}, \varepsilon) \neq \emptyset$ for each $f \in C_p(X)$, each $x \in X$, and $\varepsilon > 0$. By Theorem 2.3 we have such

Corollary 2.5. Let $h:C_p(X)\to C_p(Y)$, $h\in\mathcal{H}$ and $C_p(X)$ satisfies (2). Then $C_p(Y)$ satisfies (2) as well.

To prove the Theorem 2.3 it certainly suffices to establish only the following

Lemma 2.6. Let τ be an (infinite) cardinal, a homeomorphism $h: C_p(X) \to C_p(Y)$ belongs to \mathcal{H} and $l(Y) \le \tau$. Then $l(X) \le \tau$.

We prove this Lemma following the same pattern as in [1], but we shall need a new definition of extractor.

For an arbitrary homeomorphism $h: C_p(X) \to C_p(Y)$, $h \in \mathcal{H}$, define the mappings

$$s: Y \to 2^X$$
, $s': X \to 2^Y$ by the rules $s(y) = \operatorname{supp}\left(h^*(y)\right)$, $s'(x) = \operatorname{supp}\left(\left(h^{-1}\right)^*(x)\right)$.

First, we prove the surjectivity of s.

Proposition 2.7. The mapping s is a well-defined finite-valued lower semicontinuous surjective function.

Proof. All the statements are evident but surjectivity. Assume that there is a point $x_0 \in X \setminus s(Y)$. Consequently, $x_0 \notin S = \bigcup \left\{ \operatorname{supp} \left(h^*(y) \right) \colon y \in \operatorname{supp} \left(\left(h^{-1} \right)^* \left(x_0 \right) \right) \right\}$. Choose a function $\phi_0 \in C_p(X)$ with $\phi_0 \mid_S \equiv 0$, $\phi_0 \left(x_0 \right) = 1$. By item (c) of Proposition 1.4 we have $h^*(y) \left(\phi_0 \right) = h \left(\phi_0 \right) (y) = 0$ for each $y \in \operatorname{supp} \left(\left(h^{-1} \right)^* \left(x_0 \right) \right)$. Applying (c) again, we obtain

$$\left(\left(h^{-1}\right)^{*}(x_{0})\right)\left(h(\varphi_{0})\right) = x_{0}\left(h^{-1}(h(\varphi_{0}))\right) = x_{0}(\varphi_{0}) = \varphi_{0}(x_{0}) = 0,$$

a contradiction.

Let the symbol τ_X denote the topology of the space X. For each $y \in Y$ and each $V \in \tau_X$ put $r_V(y) = \left|h^*(y)\left(\varphi_y^V\right)\right|$, where $\varphi_y^V \in C_p(X)$, $\varphi_y^V(x) = \begin{cases} 0, & x \in V \cap s(y) \\ 1, & x \notin V \end{cases}$. Also put $G: \tau_X \to 2^Y$, $G(V) = \left\{y \in Y: r_V(y) = \left|h^*(y)\left(\varphi_y^V\right)\right| = 0\right\}$.

Recall the basic definition from [1]:

Definition 2.8. Given multivalued lower semicontinuous function $\eta: Y \to 2^X$, any mapping $G: \tau_X \to 2^Y$ is said to be η -extractor if the following three conditions hold:

- (e1) For each open $U \subset X$ we have $\eta^*(U) = \{ y \in Y : \eta(y) \subset U \} \subset G(U) ;$
- (e2) If $U, V \in \tau_X$, $U \subset V$, and $y \in G(V) \setminus G(U)$ then $\eta(y) \cap (V \setminus U) \neq \emptyset$;
- (e3) If a sequence $(U_n)_{n\in\mathbb{N}}\subset \tau_X$, $U_n\subset U_{n+1}$ is such that $Y\subset \cup_{n\in\mathbb{N}}\left(\cap_{m\geq n}G(U_m)\right)$ then $X\subset \cup_{n\in\mathbb{N}}U_n$.

So, we now must check the conditions (e1), (e2), (e3) for $\eta = s$.

Proposition 2.9. The function s and mapping G satisfy conditions (e1), (e2), (e3).

Proof. Let V be an open subset in X and $y \in Y$ is such that $s(y) \subset V$ (i.e., $y \in s^*(V)$). Then $\varphi_y^V(s(y)) = \{0\}$. Consequently, by 1.4 (c), $h^*(y) \Big(\varphi_y^V \Big) = 0$, i.e., $y \in G(V)$ and (e1) holds.

Now take any $U,V\in\tau_X$, such that $U\subset V$ and $y\in G(V)\setminus G(U)$. Since $y\not\in G(U)$ then $h^*(y)\Big(\phi_y^U\Big)\neq 0$ and we have $s(y)\not\succeq U$ by definition of the function ϕ_y^U . The assumption $s(y)\cap V=\varnothing$ implies $\phi_y^V\Big|_{s(y)}\equiv 1\equiv \phi_y^U\Big|_{s(y)}$. Therefore, by 1.4 (c) again, $h^*(y)\Big(\phi_y^V\Big)=h^*(y)\Big(\phi_y^U\Big)\neq 0$, a contradiction with $y\in G(V)$. The item (e2) is proved.

Let us verify (e3). Let us suppose that (e3) is not true and $x_0 \in X \setminus (\bigcup_{n \in \mathbb{N}} U_n)$. Inclusion $Y \subset \bigcup_{n \in \mathbb{N}} (\bigcap_{m \geq n} G(U_m))$ implies that there exists some $k \in \mathbb{N}$ such that

$$\begin{split} s'(x_0) &\subset G(U_k) \text{ . Hence, } \ h^*(y) \Big(\varphi_y^{U_k} \Big) = 0 \quad \text{for each} \quad y \in s'(x_0) \text{ . Consider the function} \\ \varphi &\in C_p(X) \text{ , } \quad \varphi(x) = \begin{cases} 1, & x \in X \setminus U_k \\ 0, & x \in s(s'(x_0)) \cap U_k \end{cases} \text{. Evidently we have} \quad \varphi(x_0) = 1 \quad \text{and} \\ \varphi \Big|_{s(y)} &\equiv \varphi_y^{U_k} \Big|_{s(y)} \quad \text{for any} \quad y \in s'(x_0) \text{ . It follows from this that} \\ h^*(y) \Big(\varphi_y^{U_k} \Big) &= h^*(y) \Big(\varphi \Big) = h(\varphi)(y) = 0 \text{ . It means that } h(\varphi) \Big|_{s'(x_0)} &\equiv 0 \quad \text{and therefore} \\ \Big(h^{-1} \Big)^* (x_0)(h(\varphi)) &= \varphi(x_0) = 0 \text{ . This contradiction finishes the proof.} \, \blacksquare \end{split}$$

We need the next two lemmas to show, using the terminology of [1], that the s-extractor G is synchronized with the Lindelöf number of Y. The Lemmas 10 and 11 below are an adaptation of the lemmas 6 and 7 from [1] to our nonlinear situation.

Recall that an open subset $V \subset X$ is said to be adequate (see [1]) if some its decomposition $V = \bigcup \{F_k : k \in \mathbb{N}\}$ in increasing sequence of zero-sets F_k has the property that for each $k \in \mathbb{N}$ there exist $y_k \in Y$ with $s(y_k) \subset V$ and $s(y_k) \setminus F_k \neq \emptyset$.

Lemma 2.10. Let I be an infinite set of cardinality $|I| = \tau \ge \aleph_0$, and let $\gamma = \{V_i : i \in I\}$ be some family of adequate open subsets in X, which is stable under taking finite unions. Put $V = \bigcup \gamma$. Then F(V) is a F_{τ} -set in Y.

Proof. For each $V_i \in \gamma$ fix its decomposition $\left(F_k^i\right)_{k \in \mathbb{N}}$ and for each $k \in \mathbb{N}$ fix a function $\eta_k^i \in C_p(X)$, which is equal to zero on F_k^i and equal to k out of V_i . If $y \in Y$, $s(y) \subset V_i$, and $k \in \mathbb{N}$ then put

$$U_k^i(y) = \bigcap_{j \le k} \left\{ y' \in Y : \left| h \left(\eta_{j+k_y^i}^i \right) (y') \right| < 1 \right\},$$

where $k_y^i = \min\left\{k: s(y) \subset F_k^i\right\}$. Of course, $U_k^i(y)$ is open neighborhood of y because the functions $h\left(\eta_{j+k_y^i}^i\right)$ are continuous on Y and are equal to zero at y (j=1,2,...k).

Put

$$A_{i} = \bigcap_{k \in \mathbb{N}} \bigcup \left\{ U_{k}^{i}(y) : s(y) \subset V_{i} \right\}, \ B_{i} = \left\{ y \in Y : s(y) \cap (V \setminus V_{i}) \neq \emptyset \right\}, \ A = \bigcap_{i \in I} \left(A_{i} \cup B_{i} \right).$$

All sets A_i clearly are G_δ -sets. All sets B_i are G_δ -sets as well. Indeed, since the mapping s is finite-valued and lower semicontinuous, then we have $B_i = \bigcap_{k \in \mathbb{N}} \left\{ y \in Y : s(y) \cap \left(V \setminus F_k^i\right) \neq \varnothing \right\}.$ Let us show that $F(V) = Y \setminus A$.

Take any $y \in F(V)$. It means that $h^*(y) \left(\varphi_y^V \right) \neq 0$. In addition, since the set s(y) is finite, there exists $i \in I$ such that $s(y) \cap V \subset V_i$. Therefore, $y \notin B_i$. Moreover, ap-

plying the item (iii) from Definition 1.2, one can find a $k \in \mathbb{N}$ such that $s(y) \cap V \subset F_n^i \subset V_i$ and $\left|h^*(y) \Big(n \cdot \varphi_y^V\Big)\right| > 1$ for all $n \geq k$. Let us note that in this case we have $\left(n \cdot \varphi_y^V\right)\Big|_{s(y)} \equiv \eta_n^i\Big|_{s(y)}$ for all $n \geq k$. By item (c) of Proposition 1.4 we conclude that $h^*(y) \Big(n \cdot \varphi_y^V\Big) = h^*(y) \Big(\eta_n^i\Big)$ for all $n \geq k$. We are going to show that $y \notin \bigcup \Big\{U_k^i(z): s(z) \subset V_i\Big\}$.

Let $s(z) \subset V_i$. Then we have by item (iii) from Definition 1.2 that $h^*(y) \left(\eta^i_{k+n^i_z} \right) = h^*(y) \left(\left(k + n^i_z \right) \cdot \varphi^V_y \right) \ge 1$. This inequality means that $y \notin U^i_k(z)$. Therefore, $y \notin A_i$ and, consequently, $y \notin A$. The inclusion $F(V) \subset Y \setminus A$ is true.

Let us check the inverse inclusion. Take $y \notin A$ and let $i \in I$ be such that $y \notin A_i \cup B_i$. We can suppose by adequateness of V_i that for each $k \in \mathbb{N}$ there exists $y_k \in Y$ such that $s(y_k) \subset V_i$ and $s(y_k) \setminus F_k^i \neq \emptyset$. Since $y \notin B_i$, then $s(y) \cap V \subset V_i$. Fix any $p \in \mathbb{N}$ such that $s(y) \cap V \subset F_p^i \subset V_i$. Since $y \notin A_i$, there exists $m \in \mathbb{N}$ such that $y \notin \bigcup \left\{ U_m^i(z) : s(z) \subset V_i \right\}$. Choose z such that $s(z) \setminus F_p^i \neq \emptyset$. Then $s(z) \in I$ and there exists $s(z) \in I$ and $s(z) \in I$

It follows from the definition of the functions $\eta^i_{l+n^i_z}$, ϕ^V_y and from inclusions $s(y) \cap V \subset F^i_p \subset F^i_{l+n^i_z} \subset V_i$ that $\left(\left(l+n^i_z\right) \cdot \phi^V_y\right)\Big|_{s(y)} \equiv \eta^i_{l+n^i_z}\Big|_{s(y)}$. Therefore, using again the item (c) of Proposition 1.4, we obtain $1 \le \left|h^*(y)\left(\eta^i_{l+n^i_z}\right)\right| = \left|h^*(y)\left(\left(l+n^i_z\right) \cdot \phi^V_y\right)\right|$. Now we can conclude by item (iv) from Definition 1.2 that $h^*(y)\left(\phi^V_y\right) \ne 0$ and $y \in F(V)$.

For an arbitrary family \mathcal{U} of sets, we denote by \mathcal{U}' the family of unions of all at most countable subfamilies of \mathcal{U} . Denote by \mathcal{L} the family of all F_{τ} -subsets of Y, and let \mathcal{B} be a base of topology of X consisting of cozero-sets.

The proof of the next lemma is the same as in [1], Lemma 7, and by this reason we omit it.

Lemma 2.11. Let τ be an infinite cardinal, $\mathcal{U} \subset \mathcal{B}$ be an open non τ -trivial cover of X. Then, for any subfamily $\gamma \subset \mathcal{U}$ with $|\gamma| \leq \tau$, there exists a subfamily $\gamma' \subset \mathcal{U}'$ which is stable under finite unions, consisting of adequate sets, has a cardinality $|\gamma'| \leq \tau$, and satisfies $\cup \gamma \subset \cup \gamma'$.

Proof of Lemma 2.6. If $l(Y) \leq \tau$, then, certainly, $l(Z) \leq \tau$ for each $Z = Z_1 \cap ... \cap Z_n$, where $n \in \mathbb{N}$, $Z_1,...,Z_n \in \mathcal{L}$. Now, combining Lemma 2.11 and Lemma 2.10, we can conclude that for each open non τ -trivial cover $\mathcal{U} \subset \mathcal{B}$ of X and for each subfamily $\gamma \subset \mathcal{U}$ with $|\gamma| \leq \tau$ there exists a subfamily $\mu \subset \mathcal{U}$ with $|\mu| \leq \tau$ such that $\forall \gamma \subset \cup \mu$ and $F(\cup \mu) \in \mathcal{L}$. Indeed, apply Lemma 2.10 to the family μ of elements of \mathcal{U} , which belong to at most countable subfamilies of \mathcal{U} forming elements of the family γ' from Lemma 2.11.

By Proposition 2.7, we have a finite-valued lower semicontinuous mapping $s: Y \to 2^X$ with nonempty values s(y) (see 1.4, (a)). Thus, all conditions of Proposition 3 from [1] holds. Consequently, $l(X) \le \tau$.

References

- Bouziad A. (2001) Le degré de Lindelöf est l-invariant. Proceedings of the American Mathematical Society. 129(3). pp. 913–919.
- Arbit A.V. (2008) The Lindelöf number is fu-invariant. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2(3). pp. 10–19.
- 3. Arbit A.V. (2011) The Lindelöf number greater than continuum is *u*-invariant. *Serdica Mathematical Journal*. 37. pp. 143–162.
- Lazarev V.R. (2022) Functionals with a finite support and homeomorphisms of spaces of continuous functions. Proceedings of the International Scientific Conference LXXV Herzen Readings. Modern Problems of Mathematics and Mathematical Education, 2022. St. Petersburg. pp. 218–223.
- Lazarev V.R. (2020) On the weak finite support property of homeomorphisms of function spaces on ordinals. *Topology and Its Applications*. 275. p. 107012. DOI: 10.1016/j.topol. 2019.107012.
- Bessaga C., Pelczyński A. (1960) Spaces of continuous functions (IV). (On isomorphical classification of spaces of continuous functions). Studia Mathematica. 19(1). pp. 53–62.
- Osipov A.V. (2020) Projective versions of the properties in the Scheepers Diagram. *Topology and Its Applications*. 278. p. 107232. DOI: 10.1016/j.topol.2020.107232.

Information about the author:

Lazarev Vadim R. (Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Mathematical Analysis and Theory of Functions, Faculty of Mechanics and Mathematics, Tomsk State University, Tomsk, Russian Federation). E-mail: lazarev@math.tsu.ru

Сведения об авторе:

Лазарев Вадим Ремирович — кандидат физико-математических наук, доцент кафедры математического анализа и теории функций механико-математического факультета Томского государственного университета (Томск, Россия). E-mail: lazarev@math.tsu.ru

Статья поступила в редакцию 19.12.2022; принята к публикации 04.12.2023

The article was submitted 19.12.2022; accepted for publication 04.12.2023