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Аннотация. Определяются однородные алгебраические системы. Примерами та-

ких систем являются полугрупповые, моноидальные и групповые системы. Они 

изучались в работах Ж. Лодея, А. Жучок, Т. Пирашвили и Н. Корешкова. Квандло-

вые системы были введены и изучались в работах В. Бардакова, Д. Федосеева и  

В. Тураева. 

В статье строятся некоторые групповые системы на множестве квадратных матриц 

над полем .  Определяются рэковые системы на множестве V G  где V – вектор-

ное пространство размерности n над ,  G – подгруппа ( )nGL . В заключение 

найдена связь между косыми брейсами и димоноидами. 
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1. Introduction 

 

In the theory of algebraic systems there exist algebraic systems with a set of one 

type algebraic operations. Let us give some examples of these algebraic systems.  

A brace (skew brace) is a set with two group operations, which satisfy some axioms 

([1, 2]). A generalization of skew braces was suggested in the paper by Bardakov–

Neshchadim–Yadav [3], where brace systems were introduced as a set with a family of 

group operations connected by some axioms. 

Dimonoids were introduced by J.L. Loday [4] in his construction of a universal  

enveloping algebra for the Leibniz algebra. A dimonoid is a set with two semigroup 

operations which are connected by a set of axioms. The construction of a free dimonoid 

generated by a given set was presented in [4] and applied to the study of free dialgebras 

and cohomology of dialgebras. Structural properties of free dimonoids have been in-

vestigated by A.V. Zhuchok in [5]. In [6], a construction of a free product of arbitrary 

dimonoids was presented. It generalizes the free dimonoid and describes its structure. 

Dimonoids are examples of duplexes which were introduced by T. Pirashvili in [7].  

A duplex is an algebraic system with two associative binary operations (without added 

connections between these operations). T. Pirashvili constructed a free duplex generated 

by a given set via planar trees and proved that the set of all permutations forms a free 

duplex on an explicitly described set of generators. 

In [8], N. Koreshkov introduced n -tuple semigroup as an algebraic system  

( ,* , )S i Ii=   

such that ( ,* )iS  is a semigroup for any i I  and with the following axiom which con-

nects these operations, 

( * )* * ( * ),   , , ,   , .i j i ja b c a b c a b c S i j I=    

The free n-tuple semigroup of an arbitrary rank was first constructed in [9]. 

In the present paper we define homogeneous algebraic systems (see Definition 2.1). 

Particular cases of these systems are semigroup (monoid, group) system

( ,* , )iG i I=  , where ( ,* )iG  is a semigroup (monoid, group) for any i I . An  

example of a semigroup system with two operations is a duplex. We call  a multi-

semigroup (multi-monoid, multi-group) if the operations are connected by the follow-

ing condition 

( * )* * ( * ),   , , ,   , .i j i ja b c a b c a b c G i j I=    

An example of a multi-semigroup with n  operations is an n-tuple semigroup [8]. 
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V.G. Bardakov and D.A. Fedoseev [10] considered quandle systems ( ,* , )iQ i I=  , 

where ( ,* )iQ  is a quandle for any i I , and defined a multiplication * *i j
 of the opera-

tions *i  and * j
 by the rule 

(* * ) ( * )* ,    , .i j i jp q p q q p q Q=   

In the general case, the algebraic system ( ,* * )i jQ  is not a quandle, but if the opera-

tions satisfy the axioms 

( * )* ( * )* ( * ),  ( * )* ( * )* ( * ),    , , ,i j j i j j i i j ix y z x z y z x y z x z y z x y z Q= =   

then ( ,* * )i jQ  and ( ,* * )j iQ are quandles. V. Turaev called quandle systems that satis-

fy the last axioms for all ,i j I  multi-quandles and gave them a topological interpre-

tation (see [11]). 

In 1971, V.M. Buchstaber and S.P. Novikov [12] introduced a notion of n-valued 

group in which the product of each pair of elements is an n-multi-set, the set of n ele-

ments with multiplicities. An appropriate survey on n -valued groups and its applica-

tions can be found in [13]. 

If we have a group system ( ,* , ),iG i I=   where ,I n=  we can define n-valued 

multiplication  

1 2* [ * , * , , * ],   , ,na b a b a b a b a b G=    

and study the algebraic system ( ,*)G . In [14], connections between group systems and 

n-valued groups were investigated. It was proved that if all groups ( ,* )iG  have  

a common unit and ( ,*)G  is an n-valued group, then * *i j=  for all 1 , .i j n   

In the present paper we study connections between skew braces and dimonoids and 

define a semigroup systems on the set of square matrices. We investigate semigroup 

systems on the set of matrices ( )nM  and give an answer on a question from [14]. 

Also, we construct some rack systems and multi-racks on the set V G , where V is  

a vector space of dimension n over a field ,  G is a subgroup of ( )nGL . 

The paper is organized as follows. 

In Section 2 we introduce homogeneous algebraic systems which include the alge-

braic systems from the introduction.  

In Section 3 we construct some group systems on the set of square matrices over  

a field and give an answer on a question from [14]. 

In Section 4, rack systems on the set V G , ( )nG GL  are defined. 

In Section 5, the connection between skew braces and dimonoids is established. 
 

2. Homogeneous algebraic systems 
 

In this section we introduce homogeneous algebraic systems.  

Definition 2.1. Let ( , , )iA f i I=   be an algebraic system with a set of algebraic 

operations if  of arity in . It is said to be an m-homogeneous I-system if all arities in

are equal to m. In particular, if I n= , we will say about an m-homogeneous n-system. 

If 2m = , we will say instead 2-homogeneous n-system on groupoid n-system or simply 

on a groupoid system.  
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A typical example is a ring ( , , )K +  that is a groupoid 2-system. Other examples of 

2-homogeneous I-systems are a semigroup (monoid, group) system ( ,* , )iG i I=  , 

where ( ,* )iG  is a semigroup (monoid, group) for all i I . An example of a semigroup 

system with two operations is a duplex. We call a system  a multi-semigroup (multi-

monoid, multi-group) if the operations are connected by the following condition 

( * )* * ( * ),   , , ,   , .i j i ja b c a b c a b c G i j I=    

An example of a multi-semigroup with n operations is an n-tuple semigroup (see [8]). 

Let us give other examples of semigroup systems.  

Skew braces (see [1, 2]). A triple ( , , )G   , where ( , )G   and ( , )G   are groups, is 

said to be a skew (left) brace if 
1

1 2 3 1 2 1 1 3( ) ( ) ( )g g g g g g g g−  =      

for all 1 2 3, ,g g g G , where 1

1g −  denotes the inverse of 1g  in ( , )G  . We call ( , )G    

the additive group and ( , )G   the multiplicative group of the skew left brace ( , , ).G     

A skew left brace ( , , )G    is said to be a (left) brace if ( , )G   is an abelian group. In this 

case we will use the notation +  instead   in additive group. We see that a skew left 

brace is an example of group system with 2 operations. 

Dimonoids (see [4, 15]). A dimonoid is a set X together with two binary operations 

 and  satisfying the following axioms: 
1 2

3

4 5

( ) ( ) ( ),

( ) ( ),

( ) ( ) ( )

x y z x y z x y z

x y z x y z

x y z x y z x y z


= =


=


 = =


 

for all ,x y , .z X  Observe that relations 1  and 5  are the “associativity”' of the pro-

ducts  and  respectively.  

The typical examples of dimonoid are the following.  

a) Let M  be a monoid. Put D M M=   and define the products by  

( , ) ( , ) : ( , ),

( , ) ( , ) : ( , ).

m n m n m nm n

m n m n mnm n

   

   

=

=
 

Then ( , , )D=  is a dimonoid.  

b) Let G be a group and X be a G-set. The following formulas define a dimonoid 

structure on X G : 

( , ) ( , ) : ( , ),

( , ) ( , ) : ( , ).

x g y h x gh

x g y h g x gh

=

= 
 

We see that a dimonoid is an example of a group system with 2 operations. 

 

3. Group systems and multi-groups 

 

Let ( )nM  be a set of n n  matrices over a field .  The next multiplication was 

defined in [14]: 
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1 2, , , 1 2 1 2* ,    , ,   , ( ),s t M M nA B sAM B tAM B s t M M M= +    

and the following was formulated: 

Question 3.1. What can we say on this multiplication? What algebraic systems one 

can construct using these multiplications? Is there z connection of these multiplications 

with non-standard matrix multiplications that were studied in [18]? 

Let us find conditions under which 
1 2, , ,( ( ),* )n s t M MM  is a semigroup. It is need to 

check axiom of associativity, 

1 2

1 2 1 1 2 2

( * )* ( )*

( ) ( ) .

A B C sAM B tAM B C

s sAM B tAM B M C t sAM B tAM B M C

= + =

= + + +
 

On the other side, 

1 2

1 1 2 2 1 2

*( * ) *( )

( ) ( ).

A B C A sBM C tBM C

sAM sBM C tBM C tAM sBM C tBM C

= + =

= + + +
 

We have a system 

1 1 1 1

2 1 1 2 1 2 2 1

2 2 2 2

;

;

.

AM BM C AM BM C

AM BM C AM BM C AM BM C AM BM C

AM BM C AM BM C

=


+ = +
 =

 

It is easy to see that ( * )* *( * )A B C A B C= . 

Lemma 3.2. The multiplication 
1 2, , ,*s t M M  is associative. 

Corollary 3.3. The algebraic system 
1 2, , , 1 2( ( ),* , , , , ( ))n s t M M nM s t M M M   is 

a semigroup system. 

Let us check, is this semigroup system a multi-semigroup. Let we have two different 

multiplications: 
1 2 1 2, , , , , ,* * ,s t M M p q N N=  =   and check the axiom 

( * ) *( ).A B C A B C =   

The left hand side: 

1 2

1 2 1 1 2 2

( * ) ( )

( ) ( ) .

A B C sAM B tAM B C

p sAM B tAM B N C q sAM B tAM B N C

 = +  =

= + + +
 

The right hand side: 

1 2

1 1 2 2 1 2

*( ) *( )

( ) ( ).

A B C A pBN C qBN C

sAM pBN C qBN C tAM pBN C qBN C

 = + =

= + + +
 

We get a system 

1 1 1 1

2 1 2 1

1 2 1 2

2 2 2 2

;

;
.

;

.

AM BN C AM BN C

AM BN C AM BN C

AM BN C AM BN C

AM BN C AM BN C

=


=


=
 =

 

Since this system is true for all matrices, we obtain 

Proposition 3.4. The semigroup system 
1 2, , , 1 2( ( ),* , , , , ( ))n s t M M nM s t M M M 

is a multi-semigroup. 
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Let us find the unit element: 

1 2* .A X sAM X tAM X A= + =  

It means that 1

1 10, 1, .t s M X E X M −= = =  =  

Hence, (*) 1

1 1* , .A X AM X E M −= =  On the other side, 1*X A XM A A= = . 

Lemma 3.5. We have the unit element only for multiplication * ,A B AMB=  
(*) 1det 0, .M E M − =  

The inverse element 
(*) 1* .A Y E AMY M −=  =  Hence, 

1 1 1.Y M A M− − −=  

Theorem 3.6. 1) Let ( )nM M , det 0M  . Then ( ( ),* )n MGL  is a group  

with the product *MA B AMB= , with unit element (*) 1E M −=  and inverse 

(*) 1 1 1.A M A M− − −=  

2) The algebraic system ( ( ),* , ( ))n M nGL M GL  is a group system. 

 

4. Rack systems 

 

Some examples of quandle systems and multi-quandles can be found in [10, 11].  

In this section we give some other examples. At first, recall basic definitions. 

Definition 4.1. ([16, 17]). 

A quandle is a non-empty set Q with a binary operation ( , ) *x y x y  satisfying 

the following axioms: 

(Q1) *x x x=  for all x Q , 

(Q2) for any ,x y Q  there exists a unique z Q  such that *x z y= , 

(Q3) ( * )* ( * )*( * )x y z x z y z=  for all , ,x y z Q . 

An algebraic system satisfying only (Q2) and (Q3) is called a rack. Many interesting 

examples of quandles come from groups. 

Example 4.2. 

1. If G is a group, m is an integer, then the binary operation * m m

ma b b ab−=  turns 

G into the quandle Conj ( )m G  called the m -conjugation quandle on G. If 1m = , this 

quandle is called a conjugation quandle and is denoted as Conj( ).G  

2. A group G with the binary operation 
1*a b ba b−=  turns the set G into the quandle 

Core( )G  called the core quandle of G. In particular, if nG = , the cyclic group of 

order n, then it is called the dihedral quandle and denoted by .nR  

3. Let G be a group and Aut( ).G  Then the set G with the binary operation 

1* ( )a b ab b−

 =   forms a quandle (Alex , )G   referred as the generalized Alexander 

quandle of G with respect to φ. 

From the last example, it follows that if ( ),nQ GL=  Aut( ( )),nGL  then we 

can define a quandle system ( ,* , Aut( ( ))).nQ GL   

In the present section we study the following question: what rack (quandle) systems 

can be defined on ,V G  where V is a vector space of dimension n over a field ,   

G is a subgroup of ( )?nGL  On the set Q V G=  , we can define the operation 
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1( , ) ( , ) ( , ( ) ),    , ,   , ,   ( ).a A b B Ab AB B a b V A B G Aut G− =      

In this case 

( , ) ( , ) ( , ( ) ) ( , ).a A a A Aa E A Aa A =  =  

It means that A E= ; hence, { }G E=  is the trivial group. 

The second quandle axiom: 
1( , ) ( , ) ( , ) ( , ) ( , ) ( , ( ) ).u X a A b B u X a A Xa XA A− =   =   

Hence,  
1 1,   ( ) .Xa b X BA A− −= =   

It means that such element ( , )u X  exists but it is not unique.  

Let us check the third quandle axiom: 

(( , ) ( , )) ( , ) (( , ) ( , )) (( , ) ( , )).a A b B c C a A c C b B c C  =     

The left-hand side: 
1 1 1 1(( , ) ( , )) ( , ) ( , ( ) ) ( , ) ( ( ) , ( ( ) ) ).a A b B c C Ab AB B c C AB Bc AB BC C− − − −  =   =     

The right-hand side: 
1 1

1 1

(( , ) ( , )) (( , ) ( , )) ( , ( ) ) ( , ( ) )

( ( ) , ( ( ) ).

a A c C b B c C Ac AC C Bc BC C

AC CBc AC C

− −

− −

   =    =

=   
 

We have the system 
1 1

1 1 1

( ) ( ) ,

( ( ) ) ( ( ) ).

AB Bc AC CBc

AB BC C AC C

− −

− − −

 = 


  =  
 

Since 1* ( )A B AB B−=   satisfies the quandle operation, the second equation is 

true. Consider the first equation of the system. It is equivalent to the equality 
1 1( ) ,AB CA C− − =  

which must be true for arbitrary , ,A B C G . Evidently, this is true for the trivial group. 

Let us define the operation (see [19]) 
1( , ) ( , ) ( , ),    , ,   , ,a A b B Ab ABA a b V A B G− =    

and check the left self-distributivity, 

( , ) (( , ) ( , )) (( , ) ( , )) (( , ) ( , )).a A b B c C a A b B a A c C  =     

Since 
1 1 1( , ) (( , ) ( , )) ( , ) ( , ) ( , )a A b B c C a A Bc BCB ABc ABCB A− − −  =  =  

and 
1 1 1 1(( , ) ( , )) (( , ) ( , )) ( , ) ( , ) ( , ),a A b B a A c C Ab ABA Ac ACA ABc ABCB A− − − −   =  =  

the left self-distributivity holds. 

Let us take n  and define more general operation, 

( , ) ( , ) ( , ),    , ,   , .n n n

na A b B A b A BA a b V A B G− =    

Check the left self-distributivity, 

( , ) (( , )) (( , )) ( , ) ( , ) ( , ),n n n n n n n n n

n n na A b B c C a A B c B CB A B c A B CB A− − −  =  =  

(( , ) ( , )) (( , ) ( , )) ( , ) ( , )

( , ).

n n n n n n

n n n n

n n n n n n

a A b B a A c C A b A BA A c A CA

A B c A B CB A

− −

− −

   =  =

=
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Hence, the operation ( , ) ( , ) ( , )n n n

na A b B A b A BA− =  is left self-distributive. 

Let us check the left divisibility axiom: ( , ) ( , ) ( , )na A u X b B = . We have  

( , ) ( , ) ( , ).n n n

na A u X A u A XA− =  

Hence,  

,

.

n

n n

u A b

X A BA

−

−

 =


=
 

Since this system has a unique solution, the left divisibility holds. 

Summarizing the previous calculations, we get 

Theorem 4.3. Let ( , )Q V G= , where V is a vector space of dimension n over a 

field ,  G be a subgroup of ( ).nGL  Then the algebraic system ( ,* , )nQ n  , where 

( , ) ( , ) ( , ),    , ,   , ,n n n

na A b B A b A BA a b V A B G− =    

satisfies the following axioms: 

1) left self-distributivity, 

( , ) (( , ) ( , )) (( , ) ( , )) (( , ) ( , )),   , , ,   , , .n n n n na A b B c C a A b B a A c C a b c V A B C G  =       

2) left divisibility, 

for any ( , ), ( , )a A b B Q  there is unique ( , )u X Q  such that 

( , ) ( , ) ( , ).na A u X b B =  

From this theorem follows 

Corollary 4.4. The algebraic system ( ,* , ),op

nQ n  where the opposite operations 

are defined by the rules 

( , )* ( , ) ( , )* ( , )op

n na A b B b B a A=  

is a rack system. 

 

5. Connection between skew braces and dimonoids 

 

In this section we find some connections between skew braces and dimonoids. 

Proposition 5.1. Let ( , )G   be a group.  

1) If a b ab = , then ( , , )G    is a skew brace. If ,a b a b ab= =  then we get  

a dimonoid. 

2) If a b ba = , then ( , , )G    is a skew brace. If a b ab=  and ,a b ba=  then 

( , , )G is not a dimonoid.                □  

The binary operation  is associative since it corresponds to the product in group G. 

Let us check the following axiom: 

( ) ( ).a b c a b c=  

So let us compute both sides of equation: 

( ) ( ),ba c c ba=  

( ) ( ) .a cb cb a=  

Since they are the same, the operation is associative. 

Let us check the following axiom: ( ) ( ).a b c a b c=  We have .cba bca=  

Therefore, it must satisfy bc cb=  and this group is Abelian group. 
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It means that if ,a b a b ab= =  then ( , , )G  is a dimonoid.                            ■ 

If we a have a skew brace ( , , ),G    then we can define operations ,a b ab=  

a b a b=   and formulate the question: is ( , , )G  a dimonoid? 

The next example shows that in a general case the answer is negative. 

Example 5.2. Let us take the brace ( , , )+  , where ( , )+  is the infinite cyclic 

group and ( 1) , ,aa b a b a b = + −  .  

Note that 

, ;
( 1)

, .

a
a b if a is even

a b a b
a b if a is odd

+
 = + − = 

−
 

Put 

, .a b a b a b a b= + =   

It is evident that the associativity holds for the binary operations  and . Let us 

check that  

( ) ( ).a b c a b c=  

We have that  

if are even;

, if is even; if is odd and is even;
( )

, if is odd. if is even and is odd;

if are od

an

.

d

and d

a b c a b

b c b a b c a b
a b c a

b c b a b c a b

a b c a b

+ +


+ − − 
  =  = 

− + − 
 − +

 

On the other side we get 

, if is even;
( )

, if is odd.

a b c a
a b c

a b c a

+ +
 + = 

− −
 

Let us take 2,a =  3,b =  4.c =  Then ( ) 1.a b c a b c= + − =  On the other side, 

( ) 9.a b c a b c= + + =  

Therefore, the skew brace ( , , )+   is not a dimonoid. 

At the end, we formulate the following questions. 

Question 5.3. Under which conditions a skew brace ( , , )G    is a dimonoid with  

respect to the operations , ?a b ab a b a b= =   

Question 5.4. Let ( ,* , )iG i I=   be a semigroup system. Define a product of 

semigroup operations, 

(* * ) ( * )* ,   , .i j i jg h g h h g h G=   

Find necessary and sufficient conditions under which ( ,* * )i jQ  is a semigroup. 
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