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Abstract. The effectiveness of the YOLOV4-CSP convolutional neural network model in solving the problem of detecting
objects moving in airspace is investigated. Images of flying objects of two classes were used as initial data for training and
researching the convolutional neural network model: helicopter-type and aircraft-type unmanned aerial vehicles. Images
of such objects were obtained in the optical and infrared wavelength ranges. Two datasets were formed from appropriately
labeled source images with objects of these two classes. The first dataset was created from optical images, and the second
from images obtained in the infrared wavelength range. The YOLOv4-CSP model was trained using training and validation
samples from each dataset. Comprehensive studies of the effectiveness of the trained model were carried out using test samples
from datasets. It is shown that the accuracy of detecting flying objects in optical images is higher than in images obtained in
the infrared range, and the results for the speed of model calculation when analyzing optical and infrared images are close.
Recommendations are given for the use of the YOLOv4-CSP model in computer vision systems for airspace monitoring.
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Annortamust. Uccrenyercs 3G dexTuBHOCTE MoJienu cBepToYHOi HelipoHHo# cet YOLOvV4-CSP npu penienun 3agaqn
JIETEKTHPOBAHUS B BO3IYIIHOM HMPOCTPAHCTBE OOBEKTOB JBYX KJIACCOB: OECITMIIOTHBIX JIETATENHHBIX alapaToB BEPTOJIETHOIO
THUIIA U CaMOJIETHOTO THHa. V300paxkeHuss 00bEKTOB MOJIy4YeHb! B ONTHYECKOM M HH(PaKpacHOM JHUala3oHaX IUIMH BOJH, U3
HUX C(OPMHPOBAHO /IBa COOTBETCTBYrOmMX Aaracera. Mogens YOLOv4-CSP o0ydeHa ¢ ucmonp3oBaHHEeM oOydaromend u
BAJITAIIMOHHON BBIOOPOK M3 K)KIOTo naraceTa. [IpoBeeHsl KOMIUIEKCHBIE HCCe oBaHUs 3()(GEKTUBHOCTH 00y4eHHOH MO-
JIETM C UCTIONIb30BAHMEM TECTOBBIX BBIOOPOK u3 faraceToB. [oka3zaHo, YTO TOYHOCTH JETEKTHPOBAHMS JETAIOMUX 00BEKTOB
Ha ONTHYECKUX H300pa)KCHUSX BBIINIE, YeM Ha M300paKEHHsIX, NOJTYUCHHBIX B MH(PAKPaCHOM JHaNa3oHe, a pe3yJbTaThl
M0 CKOPOCTH BBIYUCIICHUS] MOJEIH MPU aHAIM3€ ONTUYECKUX M MH(PAaKpacHbBIX n300pakeHnit Onusku. JaHbl pekoMeHIauuH
1o ucnosb3oBanuto Mojenu Y OLOv4-CSP B cucteMax KOMIBIOTEPHOTO 3pCHUS 11 MOHUTOPUHTA BO3LYIIHOTO IIPOCTPAHCTBA.

KnroueBble cjloBa: cucreMa KOMIIBIOTEPHOTO 3peHMs; CBepTodHas HelpoHHas ceTb YOLOvV4-CSP; nerextupoBaHue
JeTaomux 00beKTOB; OECIUIOTHBII JIeTaTeIbHBIN anmapar BepTOJIETHOTO THIIA; OCCIIIIOTHBIHN JIeTaTeNbHbIHA amnmapar caMo-
JICTHOTO THIIA.
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Introduction

Today, research and development of modern computer vision systems (CVS) are intensively conducted
all over the world. Such systems are in demand for solving many applied problems in a variety of areas of
human activity, such as controlling autonomous vehicles, monitoring the safety of enterprises and hazardous
production facilities [1], processing and analyzing medical images, and in a number of other areas of
knowledge [2]. The problem of airspace safety above enterprises with hazardous technological objects and
processes deserves special attention. To solve this problem, radar systems for detecting flying objects (FO)
are widely used. FO usually refers to various manned and unmanned aerial vehicles, birds, etc. In recent
years, monitoring of airspace for the purpose of detecting FO has begun to be carried out using various CVS
based on deep learning methods and models. Such CVS can analyze images of FO in airspace obtained
in optical, infrared (IR) and other wavelength ranges [3]. Moreover, the analysis of images entering the input
of such CVS should most often be carried out in real time [4].

The authors of [1-3] believe that such CVSs should be created based on modern deep learning models,
primarily based on convolutional neural network (CNN) models [2]. However, on this path it is necessary to
solve a number of very complex problems: to select from among the known CNN models the most promising
model (models) for implementation in real-time CVS, to conduct a comprehensive analysis of its (their)
effectiveness, taking into account the requirements for the accuracy of LO recognition and the speed of cal-
culation this model and, if it meets the requirements of the CVS, solve the problem of software or hardware
implementation of such a model as part of the CVS. Moreover, even the preparation of a representative set of
images for training and research of a CNN model can be far from a trivial task [5].

The article presents the results of comprehensive studies of the effectiveness of one of the most promi-
sing CNN maodels for creating CVS, YOLOvV4-CSP, designed for detection and classification of two classes
of aircraft in images: aircraft-type unmanned aerial vehicles (UAVS) and helicopter-type UAVS. At the same
time, the problem of recognizing such objects is solved both in optical images (RGB images) and in images
obtained in the IR range.

1. The task of detecting flying objects using a CNN model

The task of FO detection in images is the main task solved with the help of CVS when monitoring air-
space. It comes down to three subtasks: detecting objects in an image, localizing them, and determining the
class of each object. Further, the term «detection» will describe the process of solving all three subtasks. Today,
a promising direction in solving such a three-stage detection problem is the use of modern CNN models in
CVS [2-4]. When creating a real-time CVS for airspace monitoring, it is necessary to select from among the
known CNN models the most promising model(s) for implementation in such a CVS and conduct a compre-
hensive analysis of its (their) effectiveness, taking into account the requirements for the CVS and, accordingly,
to the implemented model CNN.

Let's consider these requirements in more detail. In the images obtained during airspace monitoring
using appropriate equipment as part of the CVS, one or more FOs may appear, and in the case of several
objects they may belong to different classes. This must be taken into account when initially selecting a CNN
model from a set of potentially promising models for solving the problem of FO detection. The main re-
quirements for the CNN model are the contradictory requirements of high speed of model calculations and
high accuracy of detection (classification) of FOs in images. It is especially difficult to satisfy the require-
ment of high computation speed in the case of creating CVS operating in real time [1]. Such CVS must not
only detect and classify FOs, but also track their movement in space. The required real-time scale depends
on the speed of movement of FO in the airspace. At the same time, as shown in [1, 4], the main computing
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resources of the real-time CVS are used to calculate the CNN model, which emphasizes the relevance of
creating and using the most efficient CNN models in terms of computation speed in such CVSs.

The speed of detecting FOs in an image (the speed of calculating the CNN model), measured as the
number of analyzed images per second in FPS (frames per second), should be at least 25 for most real-time
CVS [4].

The accuracy of detecting (classifying) objects in an image is usually assessed using the generally ac-
cepted metrics APos (Average Precision) and mAPgs (mean Average Precision) - the average value of APgs
for all classes of FOs. In accordance with works [2,3], we will assume that the accuracy of detection (classi-
fication) of FOs in images using the CNN model is high (the requirement for detection accuracy is met) if the
values of the APys metric for each class of FOs and the mAPys metric for all classes exceed the threshold
value of 60%.

High algorithmic efficiency of the CNN model can be also highlighted as the third requirement.
The algorithmic efficiency of the model is assessed based on the calculation of two indicators: the size
of the CNN model and its computational complexity. The CNN model size (or the measure of compactness
of the architecture), most often measured in MB (megabytes), is the amount of memory of the CVS compu-
ting device required to store the weighting coefficients of convolutional layers and intermediate buffers when
calculating the CNN model. In turn, the computational complexity of the CNN model is measured in
GFLOPs (Giga-FLoating-point OPerations per Second) and is determined by the number of multiplication,
addition and comparison operations on floating-point numbers when performing convolution and subsam-
pling procedures in all convolutional and subsampling layers of the model. Note that the threshold values of
the model size and computational complexity of the CNN are set by the developers of the real-time CVS.
They generally consider that a candidate CNN model satisfies their requirement for algorithmic efficiency if
it can be implemented on a mid-range GPU or a modern system-on-chip with a programmable integrated
circuit to speed up the computation.

The problem solved in this study can be formulated as follows. It is necessary to create real-time CVS
based on the CNN model, which should allow detection of two classes of aircraft in images: aircraft-type
UAVs and helicopter-type (multi-rotor) UAVS. The task is set to select from the known CNN models the most
promising model for detecting FOs in images and the task of its comprehensive study in order to identify the
parameters of the model at which it satisfies all three requirements formulated above, and makes it possible
to detect not only single FO, but also several objects in the image, including those belonging to various classes.

2. Choosing a CNN model for research

There are two types of CNN models for detecting objects in images: one-stage and two-stage detectors
(Figure 1). First, two-stage detectors appeared, the most famous of them is based on the R-CNN model [6].
It provides high detection accuracy, but has a low image analysis speed. The Faster R-CNN model [7] and its
extension Mask R-CNN were developed to solve the problem of the low speed of the R-CNN model. However,
according to the evaluation of these CNN models from [2], their computational speed is significantly lower
than the selected FPS threshold of 25. Moreover, in [2] it is shown that their algorithmic efficiency is quite
low. All this does not allow us to consider such two-stage CNN models as a basis for creating real-time CVS.

The analysis of various classes of CNN models carried out in [1, 2] and the above results of our dis-
cussion of a number of CNN models suggest that the most suitable for detecting FOs in images, taking into
account the specified requirements, are the YOLO (You Only Look Once) class models [8, 9]. CNN models
of this class belong to CNN models with a single-stage architecture; they analyze the image in one pass (the
stages of detection, localization and classification of objects are performed in parallel, at the same time),
which significantly increases the speed of image analysis. Moreover, such CNN models have very high accu-
racy in object detection [2]. Some YOLO class models have a complex architecture and therefore can exceed
threshold values in terms of computational complexity and the size of the memory occupied by the CNN
model. Thus, the first models of this family, such as YOLO, YOLOv2 and YOLOvV3, are not suitable for
CVS with low computing resources [9]. For such CVSs, CNN models with more compact architectures are
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needed, including, first of all, a small number of convolutional layers. In this regard, for real-time CVS it is
proposed to choose and study the effectiveness of YOLO class CNN models with more modern architec-
tures, starting with the YOLOv4 model [8].

The YOLOv4 CNN model consists of 4 blocks, in contrast to the models of two-stage detectors,
consisting of 5 blocks (Figure 1) [8]: Input-input image; Backbone (used to build a deeper CNN in order
to increase its accuracy); Neck (used to obtain more detailed spatial and semantic information about an
object); Dense Prediction (used to determine bounding box coordinates along with a confidence estimate for
a feature class). The last block uses the same principle as the earlier CNN model YOLOv3 [9].
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Fig. 1. Single-stage and two-stage detectors
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Fig. 2. Backbone block structure: normal connection of layers (a); CSP layer connection (b)

The YOLOV4-CSP CNN model is a modification of the YOLOv4 model and contains a number of
important improvements of intermediate detector blocks. The main ones are the following.

1. Backbone. This block uses a regular CSPDarknet53 connection [10] for the YOLOv4 model (Figure 2a)
or a CSP connection for the YOLOv4-CSP CNN model (Figure 2b). A CSP connection is more efficient
because its basic idea is:
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—a half of the output signal goes along the main path (generating more semantic information with
a larger receptive field);

— the second half of the signal takes a detour (preserving more spatial information with a small recep-
tive field).

2. Neck. This block uses additional SPP layers [11], as well as the CNN PAN model for path aggrega-
tion (Figure 3).
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Fig. 3. Neck block structure: YOLOv4 CNN model (a); YOLOv4-CSP CNN model (b)

Moreover, by applying optimal scaling, efficient CNN models can be obtained from the YOLOv4-
CSP model for different input image sizes (Fig. 4).
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Fig. 4. Examples of YOLOv4-CSP CNN models for input images of various sizes

Compared to previous CNN models of the YOLO class, the YOLOv4-CSP model is more effective for
object detection than previous CNN models from this class, which is confirmed by the results of a number of
studies on the MS COCO dataset [12]. For example, the average detection accuracy of YOLOv4-CSP (with
MAPgs metric) is increased from 57,9% to 65,7% compared to the YOLOv3 model. All of the above made
it possible to select YOLOv4-CSP for potential use in real-time CVS as a promising CNN model. Next, it is
necessary to conduct a study of the effectiveness of this model and determine its compliance with the require-
ments described above for the CVS and, accordingly, for the CNN model implemented in such a system.
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3. Training the YOLOv4-CSP CNN model and studying its effectiveness
3.1. Dataset preparation

To study the effectiveness of the YOLOv4-CSP CNN model in solving the problem of detecting FOs,
two datasets were marked and prepared based on the results of shooting FOs of two classes: helicopter-type
UAVs and aircraft-type UAVS. The size of each dataset is 6230 labeled images. The first dataset is formed
on the basis of 1150 optical images (RGB), the second - on the basis of 1160 images obtained in the IR range.
To expand the datasets to 6230 images, data augmentation was carried out in each of them using the following
algorithms:

— varying the size of images;

— mirroring images horizontally and vertically;

— rotation of images at an angle from 1 to 15 degrees;

— mosaic placement of objects in the image.

70% of the volume of each of these datasets was used for training the YOLOv4-CSP CNN model,
20% was used for validation, and 10% was used for testing/research. The Python programming language and
the PyTorch framework were used for the software implementation of the YOLOv4-CSP CNN. Training of
the CNN model and testing/research of its effectiveness were carried out on a computer with the following
characteristics: Intel Core i9-11900KF processor, 64 GB RAM, NVIDIA Quadro RTX 6000 video card with
24 GB of video memory.

3.2. Results of FO detection in images

The number of epochs was set equal to 200, and learning rate was set equal to 0.001. These parameters
were not changed during training and validation processes for the CNN model. The Adam algorithm was
used as an optimizer.

When testing the trained CNN model YOLOv4-CSP and conducting studies of its effectiveness on da-
tasets with optical images and images in the IR range, the following model parameters were changed: input
image size (416x416, 512x512, 608x608 pixels), mini-batch size (4, 8) and activation function (Leaky
ReLU, Mish).

Figure 5 shows, as an example, the results of detection using the trained and validated CNN model
YOLOvV4-CSP FO of each class on optical images.

Helicopter

Airplane type UAVs

b
Fig. 5. Results of FO detection on optical images: Helicopter-type UAV (a); Aircraft-type UAV (b)

The first experiment was conducted to determine the effect on the accuracy of FO detection using this
model depending on the size of mini-batches, the size of the input optical images, as well as the approaches
used to train the model, implemented in the form of BoF (Bag of Freebies) procedures and BoS (Bag of Spe-
cials). The Leaky ReLU activation function was used in the experiment. BoF and BoS are procedures that
implement methods and techniques that change the training strategy or cost of training a CNN model to im-
prove the accuracy of detecting objects in images with its help. These methods are implemented in the model
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in the form of procedures (various plugins and post-processing modules), which can significantly increase
the accuracy of object detection at the cost of a slight increase in the cost of training the CNN model [8]. The
results of first experiment are shown in table 1.

Table 1

Accuracy of FO detection in optical images for various mini-batch sizes,
input images and usage of BoF/BoS procedures

mini-batch size input image size BoF/BoS mAPos5, %
4 416 x 416 - 61,5
4 416 x 416 + 62,7
8 416 x 416 - 62,3
8 416 x 416 + 63,2
4 512 x 512 - 62,9
4 512 x 512 + 64,7
8 512 x 512 - 63,1
8 512 x 512 + 64,8

From table 1 it follows that the use of BoF/BoS procedures in conducted experiment significantly increases
the accuracy of FO detection. In this case, the size of the mini-batch has little effect on it, but the accuracy
increases with increasing size. The accuracy of FO detection increases with increasing size of input images.

In the second experiment, the accuracy of FO detection in optical images was determined using the
YOLOv4-CSP CNN model using different activation functions and for different sizes of input images. The
BoF/BoS procedures were also used, the mini-batch size remained unchanged and was equal to 8. The results
of the experiment are shown in table 2.

Table 2
Accuracy of FO detection in optical images for various activation functions and input image sizes
activation function input image size MAPos, %
Leaky ReLU 416 x 416 63,2
Mish 416 x 416 63,7
Leaky RelLU 512 x 512 64,8
Mish 512 x 512 65,2
Leaky ReLU 608 x 608 65,1
Mish 608 x 608 66,1

In the third experiment, the detection rate of FO was determined using the YOLOv4-CSP CNN model
for various sizes of input optical images. In this case, BoF/BoS procedures were used, and the mini-batch
size remained unchanged and was equal to 8. The results of the experiment are shown in table 3.

Table 3

Speed of FO detection in optical images for different input image sizes

input image size Frames per second (FPS) Average detection time, ms
416 x 416 43 23,2
512 x 512 35 28,6
608 x 608 29 34,5

Here, the detection rate was defined as calculated frames per second and the average time of FO detec-
tion per analysis of one image. It was calculated by averaging the results over the detection time of 623 optical
images from the test sample of the first dataset.

In experiments NeNe 4-6, only the initial data for training, validating and testing the YOLOv4-CSP
CNN model was changed: instead of optical images, images obtained in the IR range were fed to the input of
the model. The results of these experiments are presented in table 4, table 5 and table 6. The results in table 5
are obtained using a mini-batch size of 8 and using the BoF/BoS procedures. The average FO detection time
required to analyze one image was calculated by averaging the results over the detection time of 623 such
images from the test sample of the second dataset.
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Table 4

Accuracy of FO detection in IR images for various mini-batch sizes, input images and usage of BoF/BoS procedures

mini-batch size input image size BoF/BoS MAPos, %
4 416 x 416 — 55,3
4 416 x 416 + 56,9
8 416 x 416 — 56,8
8 416 x 416 + 57,2
4 512 x 512 - 57,6
4 512 x 512 + 59,1
8 512 x 512 - 58,4
8 512 x 512 + 59,5
Table 5
Accuracy of FO detection in IR images for various activation functions and input image sizes
activation function input image size MAPos, %
Leaky ReLU 416 x 416 56,9
Mish 416 x 416 57,2
Leaky ReLU 512 x 512 59,5
Mish 512 x 512 60,1
Leaky ReLU 608 x 608 60,3
Mish 608 x 608 60,6
Table 6

Speed of FO detection in IR images for different input image sizes

input image size Frames per second (FPS) Average detection time, ms
416 x 416 42 23,8
512 x 512 36 27,7
608 x 608 27 37,0

4. Analysis of the obtained results

As it follows from table 1 and table 4, the accuracy of FO detection in images using the YOLOv4-CSP
CNN model in the case of using the BoF/BoS procedures changes slightly with increasing mini-batch size.
Without the use of these procedures, regardless of the wavelength range in which images of objects are
obtained, the size of the mini-batch significantly affects the accuracy of FO detection: the larger its value,
the more accurate the detection. This is consistent with the results obtained when detecting various objects of
a different physical nature in images [11].

The experimental results in table 2 and table 5 show that the accuracy of FO detection in images using
the YOLOvV4-CSP CNN model is higher when using the Mish activation function for different input image
sizes. This function is smooth, non-monotonic, bounded below and unbounded above, so these properties
allow it to obtain better results compared to the Leaky ReLU activation function. However, existing imple-
mentations of the Mish activation function depend on support for CUDA hardware instructions, making
it less universally usable than the Leaky RelLU activation function. This should be taken into account when
developing CVS.

From the experimental results shown in table 3 and table 6, it follows that the best speed of detecting
FOs in images using the CNN model under study can be obtained with an input image size of 416x416 pixels.
As the size of the input images increases, the detection time per image increases, and the number of frames
processed per second decreases. At the same time, the research results indicate that with the considered sizes
of input images (416x416, 512x512 and 608x608 pixels), the CVS created on the basis of the YOLOv4-CSP
CNN model for FO detection will work in real time (the FPS parameter value in all cases is above 25).

Analysis of the results obtained shows that the accuracy of FO detection using the mAP,s metric using
the YOLOvV4-CSP CNN model on optical images is 5-6% higher than on images obtained in the IR range.
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This is explained by the fact that the model, when generating feature maps from optical images, also takes
into account the characteristics of FO colors. Moreover, exceeding the threshold for the detection accuracy of
FO, equal to 60%, occurs in all studied cases of optical image analysis (table 1 and table 2). However, for IR
images, exceeding this threshold was detected only for three cases: with input image sizes of 512x512 and
608x608 pixels and the Mish activation function, as well as for input images with sizes of 608x608 pixels
and the Leaky ReLU activation function (table 5). It is the results obtained on the accuracy of FO detection
that make it possible to formulate recommendations for the use of the YOLOv4-CSP CNN model as the
basis of real-time CVS. Thus, for optical images, taking into account the specifics of the created CVS, it can be
recommended to select a model with parameters from a fairly wide set. For images obtained in the IR range,
it is possible to use in the CVS only three versions of the model, which were identified in the experiments.

Conclusion

The most important task in airspace control is the task of detecting and classifying various FO. In recent
years, FO images obtained in the optical and IR wavelength ranges have been increasingly analyzed to
solve this problem. For this purpose, CVSs are created based on modern CNN models. We selected
the YOLOvV4-CSP model, which is part of the YOLO class, as a promising CNN model for potential use in
real-time CVS.

Comprehensive studies have been carried out on the effectiveness of the selected CNN model in de-
tecting two classes of FO in images: helicopter-type UAVs and aircraft-type UAVS. It was revealed that the
accuracy of detecting such FOs using the YOLOv4-CSP CNN model is positively influenced by the use of
BoF/BoS procedures and an increase in the size of input images. To a lesser extent, the accuracy is influ-
enced by the choice of activation function (the best results were obtained using the Mish activation function)
and mini-batch size (a larger mini-batch slightly improves detection accuracy). The obtained estimates of
the speed of FO detection in images indicate the fundamental possibility of creating a CVS based on the
YOLOvV4-CSP CNN model, which detects FO in real time.

It has been shown that the accuracy of FO detection using this CNN model in optical images is 5-6%
higher than in images obtained in the IR range. Exceeding the threshold for the detection accuracy of FO,
equal to 60%, occurs in all studied cases of optical image analysis. However, for IR images, exceeding this
threshold was detected only for three variants of the model. The results on the accuracy of FO detection
make it possible to formulate recommendations for the use of the YOLOv4-CSP CNN model as the basis for
real-time CVS.
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