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Introduction 

 

Quantum computing is a cutting-edge field that harnesses the principles of quantum mechanics to per-

form calculations exponentially faster than classical counterpart and solve complex problems that are intrac-

table to it. Similar to classical circuits in traditional computing, quantum circuits (QCs) are the fundamental 

blocks of quantum algorithms and consist of quantum gates placed sequentially and operating on quantum 

bits (qubits). However, the noisy nature of current quantum systems, together with hardware constraints and 

limited available resources, poses the significant challenges to the implementation of QCs. QC optimization 

is therefore a crucial task, and various techniques have been proposed to perform it. 

In general, there is a wide variety of QC optimization criteria. In [1], the authors aim to reduce the 

number of two-qubit controlled-NOT (CNOT) gates because of their proneness to errors. For that, the problem 

is converted to tree search problem and then solved by A* graph-traversal heuristic search allowing to find 

optimal path between any two nodes of the graph.   

QC depth is another popular QC optimization criteria, and it means the largest number of single-qubit 

and two-qubit gates on any path from input to output of a circuit [2]. In [3], the authors propose to construct 

depth-optimal QC via meet-in-the-middle algorithm being a heuristic graph-traversal path-finding search.  

There is a separate group of topology-aware QC optimization techniques. As QC is a sequence of 

quantum gates operating on qubits, logical qubits used in a gate description should be mapped to physical 

qubits embedded into the architecture. Commonly, architecture should satisfy the Nearest Neighbor (NN) 

condition implying that physical qubits can interact only with their neighbors [4] and making the process of 

logical qubits mapping non-trivial. However, it allows to reduce impact of noise on quantum operations [5], 

but introduces significant overhead because of auxiliary SWAP gates (SWAPs) applied to make interacting 

qubits adjacent. Thus, QC optimization in NN architecture is significant to minimize the number of additional 

cost-expensive SWAPs (SWAP count) [6]. 

Several approaches to optimize QC by minimizing SWAP count have been proposed. They differ by 

the way of QC representation and optimization technique used. For instance, circuit is commonly studied  

as a NN-compliant circuit, and heuristics are used to minimize SWAP count.  In [6], graph bipartitioning 

applied to qubit line adjacency graph is proposed as a SWAP count minimization technique in linear (one-

dimensional) NN architecture. In [7], QC is represented as a graph of interactions between each control-

target pair as an edge with weight equal to the number of times this pair appears in the circuit and SWAP 

count is minimized by qubit lines rearrangement in two-dimensional (2D) NN architecture using Harmony 

Search algorithm being a sort of gradient-based metaheuristic.  

Despite global qubit lines rearrangement, qubit lines can be rearranged locally, implying that qubits 

used in the description of only the current gate are reordered. This kind of qubit lines rearrangement has been 

proposed in [8, 9] with SWAP count minimization performed by heuristics. 

We are focusing on optimizing QCs for the 2D NN architecture intensively studied recently [9–12] 

and follow the approach proposed in [9] where the authors consider a circuit as a gate dependency graph and 

divide it into NN-compliant subcircuits by local reordering of qubits. For that, they propose to partition the 

graph using Boolean satisfiability. Further, to connect 2D placements of qubits obtained for each subcircuit, 

A* search is used. The novelty of the present paper is that we propose hybrid quantum-quantum QC optimi-

zation approach with quantum computing techniques replacing the classical counterpart. The choice of such 

a revolutionary type of computing is the main advantage of our approach. More specifically, quantum  

annealing implemented in D-Wave quantum machine is proposed to solve the problem under study. Being  

a hardware implemented heuristic, it returns the solution in constant time, opposed to traditional classical 

heuristics. It makes quantum annealing beneficial for solving QC optimization problem. The details are de-

scribed further.  

The structure of the paper is as follows. In Section 1, the problem is formulated accurately. Section 2 

is devoted to the theoretical fundamentals of quantum theory. In Section 3, the approach of QC optimization 

is proposed. Section 4 illustrates encouraging optimization results of several QCs.  
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1. Problem statement 

 

In this paper, we study possibilities of QC optimization via local qubit line mapping in 2D NN archi-

tecture. For such an architecture, gate set is commonly restricted and consists of single-qubit gates and 

CNOT. In combination, the aforementioned gates form a universal gate set meaning that any unitary opera-

tion can be approximated by a QC composed of only these gates [13].  

To introduce a 2D architecture, a 2D grid is defined and each qubit has four neighbors (two horizontal  

1 2 3

4 5 6

q q q

q q q

 
 
 

 

and two vertical) at most here. For instance, in grid  qubit q1 has two neighboring qubits which are q2 and q4. 

In 2D NN architecture, two-qubit gates act only on adjacent qubits, and SWAPs are used to rearrange 

non-adjacent interacting qubit lines to perform given operations. Count of additional SWAPs depends on the 

initial qubit lines placement.  Therefore, finding a 2D placement of qubit lines that minimizes the SWAP 

count is essential for optimizing the circuit.  

More precisely, we have to find a sequence of qubit lines placements  
1

m
k

k
A

=
 meaning that qubit lines 

placement is changed for, say, m times, where Ak is a 2D grid (matrix) with Ak
ij = q, if qubit q is positioned at 

(i, j). For convenience, we also define inverse mapping ( , )k k
q qq i j→  as a position of qubit q in 2D placement Ak. 

Such a sequence consists of qubit line placements each of which is valid only for one subcircuit constructed 

from a given circuit by gates recombination and becoming NN-compliant after qubit line reordering. 

To map each intermediate qubit line placement Ak to the next one, additional SWAPs are needed. For  

a 2D grid, its count is calculated via the Manhattan distance and should be minimized, i.e. 

 
1 1

1

( ) : min.
n

k k k k
q q q q

q

s k i i j j+ +

=

= − + − →  (1) 

Then, the overall SWAP count within the whole circuit is as follows: 

 
1 1

1 1 1

( ) min,
m m n

k k k k
q q q q

k k q

s k i i j j+ +

= = =

= − + − →    (2) 

where n is the number of qubits.  

However, quantum gates composing a given circuit should be recombined according to the gates de-

pendency graph G = (V, E), where V is a set of gates of the circuit and E is the set of dependencies of the 

gates with Boolean weight eg1,g2 = 1, if g2 follows g1 and they are not commutative (meaning that interchange  

of them causes different result of circuit implementation), and eg1,g2 = 0, if g1 and g2 are commutative.  

As such, the problem is a graph partitioning problem with goal function (2). 

 

2. Scientific background 

 

2.1 Quantum theory basic properties 

 

Qubit is a basic unit of information in QC [14]. A qubit has the two basic Boolean states. Because of 

the quantum theory nature, qubit can also store a superposition (linear combination) of the two basic Boolean 

states 
1

0
0

 
  
 

 or 
0

1
1

 
  
 

, i.e. the qubit state   can be expressed as follows:  

0 1 ,
 

 = =  + 
 

 

where α, β ϵ C, such that α2 + β2 =1. 

The next fundamental quantum property is entanglement [13]. It allows qubits to interact in pairs irre-

gardless of the distance between them and makes them dependent on each other that way. 
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To perform computations in quantum computing, quantum gates are used. They act on qubits and 

change their states correspondingly in that way [13]. Quantum gates are used as basic blocks to compose 

more complex functionality that is represented by a QC [15]. 

Algebraically a quantum gate is represented as a unitary operator [13] meaning that its inverse matrix is 

equal to its adjoint matrix. Unitarity conserves being of a quantum system in one of the possible states [13]. 

There is a great variety of quantum gates. Some of them are single-qubit, i.e. aforementioned NOT 

gate inverting the qubit. Other gates operate on several qubits. For example, CNOT (controlled-NOT) gate 

operates on 2 qubits and entangles them by inverting the target qubit if the control qubit is in state 1 . For 

example, if control qubit is the first one and target is the second one (CNOT(q1, q2)), then it is as follows 

1 0 0 0

0 1 0 0
.

0 0 0 1

0 0 1 0

 
 
 
 
 
 

 

Three CNOT gates being in combination construct a two-qubit SWAP gate that interchanges input 

qubits [13]. 

 

2.2. Quantum Annealing 

 

Quantum Annealing (QA) is analogous to traditional Simulated Annealing (SA) that is a local search 

optimization heuristic resembling the physical annealing process. Similar to the physical cooling, cooling 

scheme manages SA process and transition to the next candidate solution is done with temperature-

dependent probability decreasing over time. The difference between SA and QA is that the latter is able to 

find global optimum thanks to the quantum tunneling enabling annealing process to pass through the energetic 

barriers [16]. 

The QA system aims to decrease the cost function of the problem, which can be represented in an 

Ising model [17]: 

 
( , )

ε( ) ,i i ij i j
i V i j E

z h z J z z
 

= +   (3) 

where  1,1
V

z = −  is a set of spins describing qubits from V, G = (V, E) is an undirected graph of allowed 

interactions between qubits, Jij = Jji is interaction strength of the qubits i and j connected by an edge and hi is 

the on-site energy of qubit i. 

Note that QA is not a universal quantum computer. QA can solve only Quadratic Unconstrained Binary 

Optimization (QUBO) problems defined as follows [18]: 

 
 0,1

min ,
V

T

x

x Qx


 (4) 

where Qii = hi, Qij = Jij from the Ising model (3). 

As for the hardware implementation, QA is developed by D-Wave and can be run online for a limited 

access time. IT-company Fujitsu provides an alternative quantum-inspired Digital annealer. 

 

3. Solution approach 

 

We introduce a hybrid quantum-quantum SWAP count optimization of a QC to be implemented in  

a 2D NN architecture following [9]. The key ingredients of the original approach involves Boolean satisfia-

bility (that checks if there is at least one set of the variables' assignments under which the given Boolean 

formula evaluates to TRUE [19]) and A* heuristic graph-traversal path-finding search [20].  

Algorithmic description of our approach is presented below. It differs from [9] by solving SAT-

problem in QUBO format using QA (see Step 3.2-Step 3.4 below).  
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Step 1. Require: 2D grid with initial qubits placement; gate dependency graph G; set of gates Γ; 

partition P = . 

Step 2. While Γ not empty. 

Step 3. Binary search to construct a subcircuit Gk (taking into account gate dependency graph G): 

Step 3.1. Convert Gk to a CNF CNFk; 

Step 3.2. Convert a SAT-problem with CNFk to a QUBO problem with coefficient matrix Qk (by 

qubovert Python package); 

Step 3.3. Solve QUBO problem defined by Qk using QA; 

Step 3.4. Extract the first solution (with the lowest energy) - qubit lines placement Ak; 

Step 3.5. If CNFk is TRUE; 

Step 3.5.1. Partition P = P   Gk, and \ kG =  , and return to Step 2; 

Step 3.6. Return to Step 3; 

Step 4. Apply A* search to connect  
1

m
k

l
A

=
 and calculate number of SWAP gates needed for that. 

The approach is iterative and is based on binary search technique used at Step 3 to construct a subcir-

cuit taking into account gate dependencies. To obtain CNF at Step 3.1, the following conditions should be 

formulated: 

Condition 1. Interacting bits of all gates are adjacent. 

Condition 2. Each qubit is assigned to only one cell on a 2D grid. 

Condition 3. At most one qubit is assigned to each cell on a 2D grid. 

We introduce Boolean variables xijr that are 1 if qubit qr is assigned to cell (i, j) and 0 otherwise. For 

simplicity, 2D grid of 3 rows and 3 columns where cells are placed rowly is considered. 

To express Condition 1 as a Boolean function, we consider a CNOT(q1, q2) as an example. If q1 is  

assigned to (1,1), then q2 should be assigned to either one of (0,1), (1,0), (1,2), or (2,1). This condition can be 

expressed as 

 111 012 102 122 212.x x x x x      (5) 

Then, applying disjunction to the Boolean formulas of such conditions for the other cells of the grid, 

we obtain a formula for the condition such that q1 and q2 should be adjacent on the grid. After that, we apply 

conjunction of the obtained Boolean formulas for all the pairs of interacting qubits. 

As for Condition 2, each qubit is assigned to at least one cell and at most one cell. The former part  

of the condition can be expressed as 

 
( , )

1ijr
i j

x =  (6) 

for each qubit qr. The latter part prohibits assigning the qubit to two different cells: 

 
1 1 2 2

1i j r i j rx x  =  (7) 

for each qubit qr and each pair of cells (i1, j1) ≠ (i2, j2). 

Condition 3 prohibits assigning two different qubits to one cell meaning that 

 
1 2

1ijr ijrx x  =  (8) 

for each cell (i, j) and each pair of qubits qr1 and qr2, r1 ≠ r2. 

At Step 3.3, QA solves QUBO problem constructed from CNF by qubovert automatically. If the solu-

tion is satisfiable, i.e. there is such a qubit placement Ak satisfied to (5)–(8) then Gk forms a NN-compliant 

subcircuit with qubit placement Ak, and binary search on the rest of circuit is continued. 

After partitioning the gate dependency graph G into NN-compliant subcircuits with qubit placements 

 
1

m
k

l
A

=
, A* search is used to connect them optimally (Step 4). A* search is a heuristic that allows to find 

optimal way from the starting node S of a graph to the target one T based on a cost function f(N) = g(N) + h(N), 

where N is a current node during the search, g(N) is a cumulative cost from S to N [9], and h(N) is a heuristic 

that estimates the cost from the current qubit placement N to T. In our problem, a qubit placement Ak is  
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a node of a graph with A1 as the starting node and Am as the target one. Cumulative cost g(Ak) is SWAP count 

needed to obtain Ak from A1 and it is the sum of the Manhattan distances between the positions of each qubit 

in the Ak and A1, i.e.  

1

1

( ) ( ),
k

k

i

g A s i
−

=

= 
 

where s(i) is defined in (1). Heuristic cost h(Ak) is calculated analogously. 

 

4. Numerical experiments 

 

Recall that in order to solve a SAT problem in QA, at first it should be converted into QUBO format 

(4). It can be done using the technique from [19] which requires preliminary setup to encode a SAT-problem 

to the Ising model. Alternative way is to use Python package qubovert that performs such a conversion  

automatically by using sat library.  In this paper, we propose to follow the latter approach. To obtain a SAT-

problem, each of the Conditions 1, 2, and 3 ((5) – (8)) are added to the resulting Boolean formula with some 

positive Lagrangian parameter λ tuned by hand. For the experiments performed, λ=100 for (5), (7) and (8), 

and λ=10 for (6). 

To verify the applicability of the approach, we optimize one quantum gate from Reversible logic syn-

thesis benchmark page by D. Maslov (available at https://reversiblebenchmarks.github.io/) and another one 

created by us. To perform the experiments using QA, we use a real quantum annealer, namely, D-Wave  

Advantage_system5.4 with 5614 qubits and 40050 couplers, fixing the annealing time to 20µs and taking the 

best out of 2000 simulation runs. Due to the limited access time on it, we also optimize the circuits via SA 

and classical SAT-solver PicoSAT run on local Ubuntu machine (Ubuntu 23.04 with 31 GiB RAM using 

11th Gen Intel(R) Core(TM) i7-11700 @ 2.50GHz). Note that numerical experiments are performed only for 

the circuits with no more than 5 qubits because of the high computational demand on qubovert. Along the 

lines, we also benchmark the resulting quantum part of the algorithm in terms of logical and physical qubits 

to demonstrate its computational complexity of QA. 

 

4.1. Fredkin gate optimization 

 

Fredkin gate is a gate from Reversible logic synthesis benchmark page by D. Maslov. It is frequently 

used in QC because of its small cost in some QC technologies. The circuit realization at elementary quantum 

gate set is illustrated in Fig. 1 and consists of 7 two-qubit quantum gates (enumerated as C1…C7) operating 

on different pairs of 3 qubits.  In case when qubits are placed in 2×2 grid rowly with numbering starting at 

the left side, i.e. NN topology defined as 
0 1

2

 
 

− 
, 6 SWAPs are needed to implement the circuit (as 1 SWAP 

is needed before each gate to make it NN-compliant, and 1 SWAP returns the qubits to their initial order  

after the gate). In Fig. 2, the dependency of the gates of Fredkin gate from Fig. 1 is illustrated. 
 

  

Fig. 1. Fredkin gate with initial SWAP count = 6 Fig. 2. Dependency of gates in Fredkin gate from Fig. 1 
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At first, we use SA due to the limited access time of QA on D-Wave. After applying the proposed  

approach, the circuit is divided into 2 NN-compliant subcircuits as follows from Fig. 3. The qubits are placed 

following 1 2 1

0
A

 
=  

− 
 and 2 1 2

0
A

 
=  

− 
within the first and the second subcircuits, respectively. 1 SWAP is 

needed to make them consistent. 
 

 

Fig. 3. The optimized Fredkin gate from Fig. 1 
 

QA divides the circuit into subcircuits in the same way as SA does. The qubits are placed following 

1 0

1 2
A

− 
=  
 

 and 2 0

2 1
A

− 
=  
 

 within the first and the second subcircuits, respectively. Similar to SA,  

1 SWAP is needed to connect them. We should note that SA always returns positive result in case when  

a subcircuit is satisfiable unlike QA. Thus, we should repeat QA for several times (it is 15 in our case)  

to reduce the probability to exclude satisfiable subcircuit accidentally. In order to convert the subcircuit to 

QUBO, 19 logical qubits are used and 36 physical qubits are used for the first subcircuit whereas the second 

one holds 33 physical qubits. It implies that QA hardware (with more than 5000 qubits) used can solve  

bigger QUBO problems. 

To validate the result obtained above, we replicate the classical approach proposed in [9] and use the 

classical SAT solver PicoSAT via pyeda Python package. In this experiment the circuit is divided in the same 

way as both in QA and SA (see Fig. 3). And the qubits are placed following 1 1

0 2
A

− 
=  
 

 and 2 2

0 1
A

− 
=  
 

 

within the first and the second subcircuits, respectively. 1 SWAP is required to make them consistent. 
 

4.2. Optimization of CNOT-based circuit 
 

To verify the applicability of the proposed approach for a bigger QC, we construct one illustrated in 

Fig. 4. It contains 6 CNOT gates (enumerated as C1…C6) operating on some pairs of 5 qubits. Initially, it 

requires 6 SWAPs in order to implement the circuit in 2D NN architecture that is a 2D grid where qubits are 

placed rowly, i.e. 
0 1 2

3 4

 
 

− 
. In Fig. 5, the dependency of the gates of circuit from Fig. 4 is depicted. 

 

  

Fig. 4. The circuit to be optimized. Initial SWAP count = 6 Fig. 5. Dependency of gates in circuit from Fig. 4 
 

After applying SA, the number of SWAPs needed is 2 at best. During the optimization, the circuit was 

divided into 2 NN-compliant subcircuits: the first one contains C1, C2, C3, C5, and C6, and the second subcir-
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cuit is formed by C4 gate (see Fig. 5). Note that C4, C5, and C6 gates are commutative and it allows to place 

C4 after C6. The qubits are placed following 1 4 2

1 3 0
A

− 
=  
 

 and 2 3 2

1 4 0
A

− 
=  
 

 within the first and the 

second subcircuits, respectively. 
 

 

Fig. 6. The optimized circuit from Fig. 4 
 

QA also divides the circuit from Fig. 4 in the same way as SA (see Fig. 6) where optimal qubits 

placements follow 1 4 3 0

1 2
A

 
=  

− 
 and 2 0 1 4

2 3
A

 
=  

− 
 within the first and the second subcircuits, respec-

tively. In order to make these optimal qubits placements consistent, 5 SWAPs are needed. 

To encode the first subcircuit into QUBO, 103 logical and 354 physical qubits are used and 111 logi-

cal and 304 physical qubits are used for the encoding of the second subcircuit into QUBO. 

Here, QA returns suboptimal solution due to the dimension of the problem. As this CNOT-based cir-

cuit requires more logical and physical qubits than Fredkin gate investigated in Section 4.1, it seems that 

more simulation runs are needed to obtain better solution. However, its number is bounded by the access 

time provided by D-Wave machine that is also limited. We decided to increase the number of simulation 

runs up to 4000 and the result is encouraging. The proposed technique partitions the circuit into 2 subcir-

cuits: the 1st one consists of the first four CNOT gates (C1, C2, C3, C4) with qubit placement 1 2 0

4 3 1
A

− 
=  
 

 

and the other two gates construct the 2nd subcircuit with qubit placement 2 0 4

2 3 1
A

− 
=  
 

. Only 3 SWAPs 

are needed to make the subcircuits consistent. 

By optimizing the circuit using PicoSAT, the circuit is divided in the same way as both in QA and SA 

(see Fig. 6). Optimal qubits placements of the subcircuits follows 1 4 2

1 3 0
A

− 
=  
 

 and 2 4 0

3 1 2
A

− 
=  
 

 

within the first and the second subcircuits, respectively. 2 SWAPs are required to make them consistent. 

 

Conclusion 

 

In this work, we introduce hybrid QC optimization approach by local reordering of qubits using QA 

and Boolean satisfiability. Its promising nature is explained by the use of a breakthrough computing for solving 

such a problem, which provides a solution in constant time. Numerical experiments show that QA performs 

well on small scale: the solution obtained is comparable with one returned by classical SAT-solver. However, 

while solving a larger problem, QA may return suboptimal results, and making the simulation process longer 

improves the solution.  

Author express thanks to Rumyantsev Alexander S. (Dr. Sci. in Physics and Mathematics) for the sig-

nificant comments and advice while writing the paper. 
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