2024 Математика и механика

№ 92

MSC: 54F65

Tomsk State University Journal of Mathematics and Mechanics

Научная статья УЛК 515.1

doi: 10.17223/19988621/92/4

О линейных гомеоморфизмах пространств непрерывных функций с топологией поточечной сходимости на всюду плотных подмножествах

Татьяна Евгеньевна Хмылёва¹, Кира Максимовна Петрова²

^{1, 2} Томский государственный университет, Томск, Россия
¹ tex2150@yandex.ru
² lililitiv534@yandex.ru

Аннотация. По аналогии с пространствами $C_p(X)$ введены в рассмотрение пространства $C_{p,A}(X)$ непрерывных вещественнозначных функций с топологией поточечной сходимости на всюду плотном подмножестве $A \subset X$. Для пространств $C_{p,A}[a,b]$ и $C_{p,B}[c,d]$, где $A = [a,b] \setminus \{a_1,a_2,...,a_n\}$ и $B = [c,d] \setminus \{b_1,b_2,...,b_m\}$, доказано, что пространства $C_{p,A}[a,b]$ и $C_{p,B}[c,d]$ линейно гомеоморфны тогда и только тогда, когда n=m.

Ключевые слова: непрерывные функции, гомеоморфизм, топология поточечной сходимости, линейные ограниченные функционалы, функции ограниченной вариации, интеграл Стилтьеса

Для цитирования: Хмылева Т.Е., Петрова К.М. О линейных гомеоморфизмах пространств непрерывных функций с топологией поточечной сходимости на всюду плотных подмножествах // Вестник Томского государственного университета. Математика и механика. 2024. № 92. С. 48–55. doi: 10.17223/19988621/92/4

Original article

On linear homeomorphisms of spaces of continuous functions with the pointwise convergence topology

Tatiana E. Khmyleva¹, Kira M. Petrova²

1.2 Tomsk State University, Tomsk, Russian Federation

1 tex2150@yandex.ru

2 lililitiy534@yandex.ru

Abstract. In this work, by analogy with spaces $C_p(X)$, spaces $C_{p,A}(X)$ are defined, where A is an everywhere dense subset of X. The base of neighborhoods of the function $f \in C_{p,A}(X)$ is defined by sets of the form

$$U(f,x_1,...,x_n,\varepsilon) = \left\{ g \in C(X) : \left| g(x_i) - f(x_i) \right| < \varepsilon, i = 1,...,n \right\},\,$$

where $x_i \in A$ and $\varepsilon > 0$.

We consider the question of linear homeomorphism of the spaces $C_{p,A}[a,b]$ and $C_{p,B}[c,d]$, where $A = [a,b] \setminus \{a_1,...,a_n\}$ and $B = [c,d] \setminus \{b_1,...,b_m\}$. If n=m and the number of endpoints of the intervals [a,b] and [c,d] contained in the sets $\{a_1,...,a_n\}$ and $\{b_1,...,b_m\}$ is the same, then obviously the spaces $C_{p,A}[a,b]$ and $C_{p,B}[c,d]$ are linearly homeomorphic. If the number of endpoints in these sets is different, then the linear homeomorphism is proved by decomposing the spaces $C_{p,A}[a,b]$ and $C_{p,B}[c,d]$ into a product.

At $n \neq m$, it is proved that the spaces $C_{p,A}[a,b]$ and $C_{p,B}[c,d]$ are not linearly homeomorphic. The proof is carried out by contradiction. Suppose that there is a linear homeomorphism $T: C_{p,A}[a,b] \to C_{p,B}[c,d]$. Then, by the closed graph theorem, T is an isomorphism of Banach spaces C[a,b] and C[c,d]. Therefore, we can consider the mapping $T^*: C^*[c,d] \to C^*[a,b]$. Using the general form of functionals in spaces $C^*[c,d]$ and $C_{p,B}^*[c,d]$, we prove that T^* is not an isomorphism, which contradicts our assumption.

As a consequence, we obtain that the spaces of uniformly continuous functions with the topology of pointwise convergence $UC_p[a,b)$ and $UC_p(a,b)$ are not linearly homeomorphic.

Keywords: continuous functions, homeomorphism, pointwise convergence topology, linearly bounded functionals, function of bounded variation, Stieltjes integral

For citation: Khmyleva, T.E., Petrova, K.M. (2024) On linear homeomorphisms of spaces of continuous functions with the pointwise convergence topology. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics*. 92. pp. 48–55. doi: 10.17223/19988621/92/4

Введение

Все рассматриваемые в данной статье пространства являются тихоновскими. Определение 1. Пусть $A \subset X$ — всюду плотное подмножество. Пространство $C_{p,A}(X)$ — пространство непрерывных вещественнозначных функций, где база окрестностей функции $f \in C_{p,A}(X)$ задается множествами вида:

$$U(f,x_1,...,x_n,\epsilon)=\{g\in C(X):|\ g(x_i)-f(x_i)|<\epsilon,i=1,...,n\},\ \ \text{где}\ x_i\in A\ \ \text{и}\ \ \epsilon>0.$$
 Через $\pi_A:C_p(X)\to C_p(A)$ обозначим отображение сужения функций из $C_p(X)$ на A , т.е. $\pi_A(f)=f\mid_A$ для всех $f\in C_p(X)$. Подпространство $\pi_A(C_p(X))\to C_p(A)$ обозначают $C_p(A\mid X)$.

Известно, что если $A \subset X$ — всюду плотное подмножество, то $\pi: C_p(X) \to C_p(A \mid X)$ — взаимно однозначное непрерывное отображение [1. С. 17]), т.е. уплотнение. Но если мы рассмотрим отображение $\pi: C_{p,A}(X) \to C_p(A \mid X)$, то нетрудно увидеть, что получаем линейный гомеоморфизм.

Для компакта X через C(X) обозначаем пространство всех непрерывных вещественнозначных функций с нормой $||f|| = \max\{|f(x)|: x \in X\}$.

 $C^*(X)$ — пространство линейных непрерывных функционалов Φ на пространстве C(X) с нормой $\|\Phi\| = \sup\{|\Phi(f)|: \|f\| \le 1\}$.

 $C_p^*(X)$ — пространство линейных непрерывных функционалов ϕ на пространстве $C_p(X)$. Известно, что если $\phi \in C_p^*[a,b]$, то

$$\phi = \alpha_1 \delta_{x_1} + ... + \alpha_l \delta_{x_l},$$

где $x_i \in [a,b]$ и $\delta_{x_i} f = f(x_i)$ [2. С. 400].

Через V[a,b] обозначаем множество функций ограниченной вариации, заданных на промежутке [a,b], $\bigvee_a^b g$ — вариация функции $g \in V[a,b]$. По теореме Жордана любая функция $g \in V[a,b]$ представима в виде: g = v - u, где v,u — неубывающие функции на [a,b], и $v(x) = \bigvee_a^x g$. Следовательно, $\bigvee_{x_1}^{x_2} g = v(x_2) - v(x_1)$ для любых $x_1, x_2 \in [a,b]$.

Для подмножества $Y \subset X$ обозначим $C^0(X \mid Y) = \{f \in C(X) : f \mid_Y \equiv 0\}$. Если это пространство наделено топологией поточечной сходимости, то пишем $C^0_p(X \mid Y) = \{f \in C_p(X) : f \mid_Y \equiv 0\}$.

Если $X = \bigoplus_{n=1}^{\infty} X_n$ — топологическая сумма тихоновских пространств X_n , то ясно,

что
$$C_p(X) = \prod_{n=1}^\infty C_p(X_n)$$
 . Для $f = \{f_n\}_{n=1}^\infty \in \prod_{n=1}^\infty C_p(X_n)$ пусть $\parallel f_n \parallel = \sup\{\mid f_n(x) \mid : x \in X\}$.

Положим

$$\left(\prod_{\scriptscriptstyle n=1}^{\scriptscriptstyle \infty} C_{\scriptscriptstyle p}(X_{\scriptscriptstyle n})\right)_{\scriptscriptstyle c_0} = \ \left\{f = \left\{f_{\scriptscriptstyle n}\right\}_{\scriptscriptstyle n=1}^{\scriptscriptstyle \infty} \in \prod_{\scriptscriptstyle n=1}^{\scriptscriptstyle \infty} C_{\scriptscriptstyle p}(X_{\scriptscriptstyle n}) : \left\{n \in \mathbb{N} : \mid\mid f_{\scriptscriptstyle n}\mid\mid > \epsilon\right\} \ - \ \text{ конечно, } \forall \epsilon > 0\right\}.$$

Пусть \mathbb{R}^{ω} — счетное произведение прямых, $c \subset \mathbb{R}^{\omega}$ — подпространство всех сходящихся числовых последовательностей.

 $X \sim Y$ означает, что топологические пространства X и Y гомеоморфны. Если X и Y линейные топологические пространства, то $X \cong Y$ означает, что Y и Y линейно гомеоморфны.

Основные результаты

Мы рассматриваем пространства $C_{p,A}[a,b]$ и $C_{p,B}[c,d]$, где $A=[a,b]\setminus\{a_1,...,a_n\}$, $B=[c,d]\setminus\{b_1,...,b_m\}$.

Теорема 1. Если n=m, то пространства $C_{p,A}[a,b]$ и $C_{p,B}[c,d]$ являются линейно гомеоморфными.

Доказательство. Рассмотрим два случая.

А) Пусть $|\{a,b\} \cap \{a_1,...,a_n\}| = |\{c,d\} \cap \{b_1,...,b_n\}|$, т.е. количество концевых точек во множествах A и B одинаково.

В этом случае существует гомеоморфизм $\phi:[a,b]\to[c,d]$ такой, что $\phi(a_i)=b_i$ для всех i=1,...,n. Нетрудно видеть, что отображение $T:C_{p,B}[c,d]\to C_{p,A}[a,b]$, действующее по формуле $Tf=f\circ \phi$ для любого $f\in C_{p,B}[c,d]$, является искомым линейным гомеоморфизмом.

Б) $|\{a,b\} \cap \{a_1,...,a_n\}| \neq |\{c,d\} \cap \{b_1,...,b_n\}|$, т.е. количество концевых точек во множествах A и B различно.

Проведем доказательство для случая $a_1=a$ и $\{b_1,...,b_n\}\subset (c,d)$. В остальных случаях доказательство аналогично. Не нарушая общности, будем считать, что $b_1<...< b_n$. Возьмем две последовательности $y_k=b_1-\frac{\delta}{k}$ и $y_k'=b_1+\frac{\delta}{k}$, причем δ выбрано так, что $y_1=c$ и $y_1'< b_2$. Рассмотрим множество $F=\{y_k\}_{k=1}^\infty\bigcup\{y_k'\}_{k=1}^\infty$. Тогда для любой функции $f\in C_{n,B}[c,d]$ выполнено

$$f|_{F} = \{f(y_1), f(y_1'), f(y_2), f(y_2'), \ldots\} \in c.$$

Для произвольного элемента $h=\{h_i\}\in c$ и $k\in\mathbb{N}$ определим линейную функцию l_k , заданную на промежутке $[y_k,y_{k+1}]$, такую что $l_k(y_k)=h_{2k}$, а $l_k(y_{k+1})=h_{2k+2}$. Аналогично определим функцию l_k' , заданную на промежутке $[y_{k+1}',y_k']$, такую что $l_k'(y_{k+1}')=h_{2k+1}$, $l_k'(y_k')=h_{2k-1}$ и $l_0'\equiv h_1$ на промежутке $[y_1',d]$.

Рассмотрим оператор $P: c \to C_{n,R}[c,d]$, определенный формулой

$$P(h)(y) = \begin{cases} l_k(y), & \text{если} \quad y \in [y_k, y_{k+1}], \\ l_k'(y), & \text{если} \quad y \in [y_{k+1}', y_k'], \\ l_0'(y), & \text{если} \quad y \in [y_1', d], \\ \lim_{k \to \infty} h_k, & \text{если} \quad y = b_1. \end{cases}$$

Поскольку значения линейных функций l_k и l_k' непрерывно зависят от значений на концах промежутка, оператор P является непрерывным. Линейность этого оператора очевидна.

Теперь рассмотрим оператор $S:C_{p,B}[c,d]\to c\times C^0_{p,B}([c,d]\,|\,F)$, действующий по формуле

$$Sf = (f|_{F}, f - P(f|_{F})).$$

Нетрудно проверить, что такой оператор является линейной непрерывной биекцией. Обратный оператор $S^{-1}: c \times C^0_{p,B}([c,d] \mid F) \to C_{p,B}[c,d]$, действующий по правилу

$$S^{-1}(h, f) = f + P(h),$$

также является линейной непрерывной биекцией. Следовательно,

$$C_{p,B}[c,d] \cong c \times C_{p,B}^{0}([c,d]|F).$$

Обозначим $I_k' = [y_{k+1}', y_k']$, $I_k = [y_k, y_{k+1}]$ и каждому элементу $f \in C^0_{p,B}([c,d] | F)$ поставим в соответствие две последовательности $\{f \mid I_k\}_{k=1}^\infty$, $\{f \mid I_k'\}_{k=1}^\infty$ и функцию $f \mid_{[y_i',d]}$.

Тогда получим

$$C_{p,B}^{0}([c,d]|F) \cong \left(\prod_{k=1}^{\infty} C_{p}^{0}(I_{k}|\{y_{k},y_{k+1}\})\right)_{c_{0}} \times \left(\prod_{k=1}^{\infty} C_{p}^{0}(I'_{k}|\{y'_{k+1},y'_{k}\})\right)_{c_{0}} \times C_{p,B}^{0}([y'_{1},d]|\{y'_{1}\}).$$

Поскольку $I_k \sim [0,1] \sim I'_k$, то

$$C_{p,B}^{0}([c,d]|F) \cong \left(\prod_{k=1}^{\infty} C_{p}^{0}([0,1]|\{0,1\})\right)_{C_{0}} \times C_{p,B}^{0}([y'_{1},d]|\{y'_{1}\}).$$

Следовательно,

$$C_{p,B}[c,d] \cong c \times \left(\prod_{k=1}^{\infty} C_p^0([0,1] | \{0,1\}) \right)_{c_0} \times C_{p,B}^0([y_1',d] | \{y_1'\}).$$

Для пространства $C_{p,A}[a,b]$ возьмем последовательность $x_k = a_1 + \frac{\delta}{k} = a + \frac{\delta}{k}$, причем δ выбрана так, что $x_1 < a_2$. Рассмотрим множество $F' = \{x_k\}_{k=1}^\infty$. Тогда аналогично предыдущему получим

$$C_{p,A}[a,b] \cong c \times C_{p,A}^{0}([a,b] \mid F') \cong c \times \left(\prod_{k=1}^{\infty} C_{p}^{0}([0,1] \mid \{0,1\}) \right)_{c_{0}} \times C_{p,A}^{0}([x_{1},b] \mid \{x_{1}\}).$$

Так как выброшенных точек в отрезках $[x_1,b]$ и $[y_1',d]$ одинаковое число, то, применяя рассуждения из п. А), получаем, что

$$C_{p,A}^{0}([x_1,b]|\{x_1\}) \cong C_{p,B}^{0}([y_1',d]|\{y_1'\}).$$

Следовательно, $C_{p,A}[a,b] \cong C_{p,B}[c,d]$.

Теорема 2. Если $n \neq m$, то пространства $C_{p,A}[a,b]$ и $C_{p,B}[c,d]$ не являются линейно гомеоморфными.

Доказательство. По теореме 1 мы можем ограничиться случаем $\{b_1,...,b_m\}\subset (c,d)$. Пусть $A=[a,b]\setminus \{a_1,...,a_n\}$, $B=[c,d]\setminus \{b_1,...,b_m\}$ и n>m. Предположим, существует линейный гомеоморфизм $T:C_{p,A}[a,b]\to C_{p,B}[c,d]$. Тогда оператор $T^*:C_{p,B}^*[c,d]\to C_{p,A}^*[a,b]$, действующий по правилу $T^*\varphi=\varphi\circ T$, — тоже линейный гомеоморфизм. По следствию из теоремы о замкнутом графике для линейного отображения в банаховых пространствах получаем, что отображение $T:C[a,b]\to C[c,d]$ является линейным гомеоморфизмом, $T^*:C^*[c,d]\to C^*[a,b]$ действует по той же формуле $T^*\varphi=\varphi\circ T$ и также является линейным гомеоморфизмом пространств $C^*[c,d]$ и $C^*[a,b]$.

Заметим, что если $\phi \in C_{n,A}^*[a,b]$, то

$$\phi = \alpha_1 \delta_{x_1} + \dots + \alpha_l \delta_{x_l},$$

где $x_i\in A$ и $\delta_{x_i}f=f(x_i)$. Так как $a_i\not\in A$, то $\delta_{a_i}\in C^*[a,b]$, но $\delta_{a_i}\not\in C_{p,A}^*[a,b]$ для i=1,...,n .

Если $\phi \in C^*[c,d]$, то

$$\phi(Tf) = \phi_g(Tf) = \int_{a}^{d} Tf(y)dg ,$$

где g — функция ограниченной вариации на промежутке [c,d], такая что g(c) = 0 и g(y) = g(y+0) для любого $y \in (c,d]$ [3. C. 384].

Для каждого $i \le n$ существует функция $g_i \in \mathsf{V}[c,d]$, такая что $(T^{-1})^*\delta_{a_i} = \phi_{g_i}$ и $g_i(b_k) = g(b_k+0)$ для k=1,...,m.

По свойствам интеграла Стилтьеса

$$\alpha_1 \phi_{g_1} + \dots + \alpha_n \phi_{g_n} = \phi_{\alpha_1 g_1 + \dots + \alpha_n g_n}$$
.

Покажем, что существуют константы $\alpha_1,...,\alpha_n$, такие что функция $g=\alpha_1g_1+...+\alpha_ng_n$ непрерывна в точках $b_1,...,b_m$ и $\alpha_1^2+...+\alpha_n^2\neq 0$. Непрерывность означает, что выполняются следующие равенства:

$$\begin{cases} \alpha_1 g_1(b_1) + \ldots + \alpha_n g_n(b_1) = \alpha_1 g_1(b_1 - 0) + \ldots + \alpha_n g_n(b_1 - 0), \\ \ldots & \ldots \\ \alpha_1 g_1(b_m) + \ldots + \alpha_n g_n(b_m) = \alpha_1 g_1(b_m - 0) + \ldots + \alpha_n g_n(b_m - 0). \end{cases}$$

Получаем однородную систему m уравнений с n неизвестными, где n>m. В этом случае система имеет ненулевое решение. Не нарушая общности, можно считать, что $\alpha_1 \neq 0$.

Зададим последовательность непрерывных функций $\{f_j\}_{j=1}^\infty \in C_{p,A}[a,b]$:

$$f_j(a_1) = 1, \quad f_j(x) = 0, \ \text{если} \ x \not\in (a_1 - \frac{\delta}{j}, a_1 + \frac{\delta}{j}) \ \text{и} \ \delta > 0 \ \text{ задано так, что} \ a_1 + \delta < a_2 \,.$$

Ясно, что в пространстве $C_{p,A}[a,b]$ последовательность $f_j \to 0$ при $j \to \infty$ и $\|f_j\| = 1$.

Для каждого $j \in \mathbb{N}$, с одной стороны,

$$\begin{split} &(T^{-1})^*(\alpha_1\delta_{a_1}+...+\alpha_n\delta_{a_n})(Tf_j)=((\alpha_1\delta_{a_1}+...+\alpha_n\delta_{a_n})\circ T^{-1})(Tf_j)=\\ &=(\alpha_1\delta_{a_1}+...+\alpha_n\delta_{a_n})(f_j)=\alpha_1f_j(a_1)+...+\alpha_nf_j(a_n)=\alpha_1\neq 0. \end{split}$$

С другой стороны, получаем

$$\begin{split} &(T^{-1})^*(\alpha_1\delta_{a_1} + \ldots + \alpha_n\delta_{a_n})(Tf_j) = (\alpha_1\phi_{g_1} + \ldots + \alpha_n\phi_{g_n})(Tf_j) = \phi_g(Tf_j) = \\ &= \int_c^d Tf_j(y)dg = \int_c^{b_1 - \frac{\delta}{k}} Tf_j(y)dg + \int_{b_1 - \frac{\delta}{k}}^{b_1 + \frac{\delta}{k}} Tf_j(y)dg + \int_{b_1 + \frac{\delta}{k}}^{b_2 - \frac{\delta}{k}} Tf_j(y)dg + \ldots + \int_{b_{m-1} + \frac{\delta}{k}}^{b_m - \frac{\delta}{k}} Tf_j(y)dg + \int_{b_m + \frac{\delta}{k}}^{b_m + \frac{\delta}{k}} Tf_j(y)dg. \end{split}$$

По свойствам интеграла Стилтьеса [4. С. 218]) для всех i = 1,...,m и $k \in \mathbb{N}$

$$\left| \int_{b_{i} - \frac{\delta}{k}}^{b_{i} + \frac{\delta}{k}} Tf_{j}(y) dg \right| \leq \max_{c \leq y \leq d} |Tf_{j}(y)| \cdot \bigvee_{b_{i} - \frac{\delta}{k}}^{b_{i} + \frac{\delta}{k}} g = \|Tf_{j}\| \cdot \bigvee_{b_{i} - \frac{\delta}{k}}^{b_{i} + \frac{\delta}{k}} g \leq \|T\| \cdot \|f_{j}\| \cdot \bigvee_{b_{i} - \frac{\delta}{k}}^{b_{i} + \frac{\delta}{k}} g = \|T\| \cdot \bigvee_{b_{i} - \frac{\delta}{k}}^{b_{i} + \frac{\delta}{k}} g$$
 (1)

По определению функции $v(y) = \bigvee_{i=1}^{N} g$, получим

$$\bigvee_{b_i-\frac{\delta}{k}}^{\frac{\delta}{k}}g=v(b_i+\frac{\delta}{k})-v(b_i-\frac{\delta}{k}).$$

Известно, что если функция g непрерывна в некоторой точке y, то функция v также непрерывна в точке y [4. С. 210]. Поэтому для некоторого $k_0 \in \mathbb{N}$ выполнено

$$\bigvee_{b_i-\frac{\delta}{k_0}}^{b_i+\frac{\delta}{k_0}}g=v(b_i+\frac{\delta}{k_0})-v(b_i-\frac{\delta}{k_0})<\frac{|\alpha_1|}{2m\cdot \|T\|}.$$

Тогда, учитывая (1), получим

$$\sum_{i=1}^{m} \left| \int_{b_{i} - \frac{\delta}{k_{0}}}^{b_{i} + \frac{\delta}{k_{0}}} Tf_{j}(y) dg \right| < ||T|| \cdot \frac{|\alpha_{1}|}{2m \cdot ||T||} m = \frac{|\alpha_{1}|}{2}.$$

Рассмотрим интегралы вида

$$\int_{c}^{b_{1}-\frac{\delta}{k_{0}}} Tf_{j}(y)dg, \int_{b_{1}+\frac{\delta}{k_{c}}}^{b_{i+1}-\frac{\delta}{k_{0}}} Tf_{j}(y)dg, \int_{b_{m}+\frac{\delta}{k_{c}}}^{d} Tf_{j}(y)dg.$$

Каждый из этих m+1 интегралов представляет собой линейный непрерывный функционал $\Phi_i \in C^*[b_{i-1}+\frac{\delta}{k_0},b_i-\frac{\delta}{k_0}]$, $(b_0+\frac{\delta}{k_0}$ считаем равным c, а $b_{m+1}-\frac{\delta}{k_0}$ считаем равным d). Поскольку слабая сходимость ограниченных последовательностей в пространствах C(K) совпадает с поточечной сходимостью [5. C. 288], то для всех i=1,...,m+1 выполнено $\Phi_i(f_i)\to 0$ при $j\to\infty$. Следовательно, суще-

ствует такое j_0 , что каждый из этих интегралов будет меньше $\frac{|\alpha_1|}{2(m+1)}$.

Таким образом,

$$|\alpha_1| = |(T^{-1})^*(\alpha_1\delta_{a_1} + ... + \alpha_n\delta_{a_n})(Tf_{i_n})| < |\alpha_1|.$$

Это противоречие завершает доказательство теоремы.

Обозначим через $UC_p(a,b)$ $\left(UC_p[a,b)\right)$ пространство равномерно непрерывных вещественнозначных функций, заданных на интервале (a,b) $\left([a,b)\right)$ и наделенное топологией поточечной сходимости. Нетрудно видеть, что $UC_p(a,b) = C_p\left((a,b) \mid [a,b]\right)$. Так как $C_p\left((a,b) \mid [a,b]\right) \cong C_{p,(a,b)}[a,b]$, то из теоремы 2 получаем такое следствие.

Следствие 1. $UC_p(a,b) \not\cong UC_p[a,b)$, т.е. пространства равномерно непрерывных функций, определенных на интервале (a,b) и полуинтервале [a,b), не являются линейно гомеоморфными.

Следствие 2. $UC_p(\mathbb{R}) \ncong UC_p[0,+\infty)$.

Список источников

- 1. Архангельский А.В. Топологические пространства функций. М.: Изд-во МГУ, 1989. 222 с.
- 2. *van Mill J.* The Infinite-Dimensional Topology of Function Spaces. Amsterdam et al.: Elsevier, 2001. 643 p. (North-Holland Mathematical library; v. 64).
- 3. *Колмогоров А.Н., Фомин С.В.* Элементы теории функций и функционального анализа. 7-е изд. М.: Физматлит, 2004. 572 с.
- 4. Натансон И.П. Теория функций вещественной переменной. М.: Наука, 1974. 480 с.
- 5. Данфорд Н., Шварц Дж. Линейные операторы. М.: Изд-во иностр. лит., 1962. 895 с.

References

- Arkhangel'skii A.V. (1992) Topological Functions Spaces. Mathematics and Applications, Soviet Series, vol.78. Dordrecht: Kluwer Academic.
- 2. van Mill J. (2001) The Infinite-Dimensional Topology of Function Spaces. North-Holland.
- 3. Kolmogorov A.N., Fomin S.V. (2012) *Elements of the Theory of Functions and Functional Analysis*. Eastford: Martino Fine Books.
- 4. Natanson I.P. (2016) Theory of Functions of a Real Variable. Mineola: Dover Publications.
- 5. Dunford N., Schwartz J.T. (1988) Linear Operators. Part I. New York: Wiley.

Сведения об авторах:

Хмылёва Татьяна Евгеньевна – кандидат физико-математических наук, доцент кафедры математического анализа и теории функций Томского государственного университета (Томск, Россия). E-mail: tex2150@yandex.ru.

Петрова Кира Максимовна — студент механико-математического факультета Томского государственного университета (Томск, Россия). E-mail: lililitiy534@yandex.ru

Information about the authors:

Khmyleva Tatiana Evgenievna (Candidate of Physics and Mathematics, Department of Mathematical Analysis and Theory of Functions, Tomsk State University, Tomsk, Russian Federation). E-mail: tex2150@yandex.ru

Petrova Kira Maximovna (Faculty of Mechanics and Mathematics, Tomsk State University, Tomsk, Russian Federation). E-mail: lililitiy534@yandex.ru

Статья поступила в редакцию 21.06.2024; принята к публикации 09.12.2024

The article was submitted 21.06.2024; accepted for publication 09.12.2024