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AHHOTanus. PaccmarpuBaeTcs 3a1aya yIpaBiIeHHs 3allacaMi €IMHUYHOIO MPOJYKTa Ha KOHEUHOM BPEMEHHOM
TOPU30HTE C TETEPOTr€HHBIM ITyaCCOHOBCKUM IPOLECCOM cIipoca. IHTEeHCHBHOCTD cIipoca 3aBUCUT OT YPOBHS 3armaca
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(GyHKIMU 1 TapTHU ToBapa. PaccMoTpeHo 1Ba BUIa BECOBBIX (DyHKIMH, MPUBEACHBI YHCIICHHBIE PE3yIbTaThl ONTHMH-
3alMU ¥ UMUTAIIMOHHOT'O MOJIEIMPOBAHUSI.
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1. Introduction and problem statement

Research on inventory models for perishables dates back to the 1960s. A comprehensive review of fresh
product supply chain management was provided in [1, 2], highlighting key developments in the field. Recent
advancements in inventory theory have increasingly incorporated dynamic pricing mechanisms, with particular
emphasis on demand-driven market environments [3].

In [4], we proposed a basic dynamic pricing control model, which allow us, triggering purchases, to sell
all the perishable product at hand during its lifetime almost surely. In [5], we introduced a multiplicative
coefficient into the basic model. In [6], we considered more complicated weight function introducing a power-
law coefficient.

The presence of the adjustable coefficients in the weight functions allows us to use a linear approxima-
tion of the intensity-of-price dependence and optimize the zero-ending inventory retailing process. Moreover,
the coefficients can help us also to solve the problem of fitting the demand rate in a real-life situation. This
problem is the most challenging one in dynamic pricing, see, for example, [7].

In this paper, we do not specify the type of weight function, and we get the equation for the optimal
weight function, which maximizes the expected revenue, and consider its approximate solution as one near-
optimal weight function. This near-optimal weight function almost surely implies shortages depending on the
range of the unknown constant it contains. Firstly, we consider the task of the expected revenue maximization
with respect to the constant considering lost sales. Secondly, we modify the optimal weight function approxi-
mation so that the price at the beginning of the sales period becomes close to the base price and obtain the
expected revenue in case of possible shortages.

Inventory shortages systems are generally classified into two categories: backlog systems and lost-sales
systems [8]. In lost-sales systems, actual sales often underestimate true demand, resulting in inaccurate demand
forecasts [9]. Additionally, lost sales can give rise to rationing and gaming behaviors, both of which contribute
to the so-called bullwhip effect in supply chains. This effect causes instability, undermining operational
efficiency across industries [10]. From both academic and practical perspectives, the assumption of lost sales
is often considered more appropriate than backlogging [11]. In this study, we adapt a framework where unmet
demand is treated as lost.

We begin by outlining the model's assumptions and notations. The supply chain under consideration
consists of a single vendor and customers. Acting as a monopolist, the vendor aims to maximize revenue by
procuring a fixed lot size Qo at a unit cost d and selling it over a predetermined period T. Inventory replenish-
ment is not permitted within this fixed period.

The demand is assumed to be a compound Poisson process with intensity A(c(t)), where c=c(t) is

a dynamic retail price per unit, the orders are independent identically distributed continuous random variables
with the first and second moments a, and a, respectively.

The stochastic properties of the sales process and the expected revenue are determined using a diffusion
approximation of the stock level process. This approach enables us to derive analytically manageable expres-
sions. Thus, we assume that the stock level process satisfies the following equation:

dQ(t) = —a,A(c(t))dt + \/aA(c(t))dw(t),

where w(-) is the Wiener process.

2. Near-Optimal weight function for a large lot size

We consider the following model for controlling the intensity of customers’ flow through dynamic pricing:

alk(c(t))=$%, (1)

where ¢(-) is an unknown weight function, t [0,T ]. As stated in [12], “formulating problems in the framework
of intensity control is considered a promising approach." We will call control model (1) as a general one.
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The idea of such a model of intensity control as well as a lot of results in inventory control modelling
belongs to Alexander Fedorovich Terpugov (1939-2009), former Head of the Department of Probability
Theory and Mathematical Statistics at Tomsk State University, outstanding scientist and teacher.

Thus, the stock level process satisfies the following equation:

__ QW) 4, [2 QW)
Q)= T(p(t/T)dt+ achp(t/T)dW(t)'

2.1. The expected revenue and near-optimal weight function

It is easy to show that the expectation

E{Q(t)} =Q(t) =Qyexp{-w (t/T)}, )

where w(z) = o (x)dx.
0

Denote &(t) =E {Qz(t)}. Applying Ito’s formula and averaging, we get

dQ°W) __, Q°M , %Quep{-w(UT)}

dt To(t/T) aTo(t/T)
subject to Q2(0) = Q2.
It follows that the variance
Var{Q(t)} = a;&exp{—\y(t/T )} (1— exp{-v (t/T )}) (3)
Let us consider linear approximation 1of the intensity-of-price dependence
A(C)=ho — Ny C(tl_ S, @)

0
where ¢ is a stationary price corresponding stationary intensity A, and parameter A, >0 characterizes the
sensitivity of A(-) to relative price‘s deviations from stationary price Co.

Linear dependence of the customers’ flow intensity on the price is common in literature, for example,
in [13] the demand rate is supposed to be a linear function of the price.

From (1) and (4) we get
_ Mo QM
c0=c [“ A alle(p(t/T)J '

The average revenue at time unit
S A2
E{c(t)ar(c)}=c,E pato L QO Q[ =, [1+hj Qb _ % >
Mooal To(t/T) ) Te(t/T) A JTo(t/T) alleZ(p(t/T)
The expected revenue over the cycle

§=} E {a,c(t)\(t)} dt =
0

CoQo{ L (). 1 |t o). 2 @) 2
=2\ (hg+A)[e7Y 2)dz——| Qy——= |[e™Y 2)dz ——=[e7V z)dz |.
» (%o 1)£ v'(2) aT| %, g y'(2) athj) y'(2)

1
Taking into account [e™V®y/(z)dz=1-e™¥®  we get
0

= ¢oQ _ 1 a, |1 _ a, Z _
S =200 (hg+2, )(1-eVD ) —| Q, — 22 |[e VD2 (2)dz - 2 [e VP y'2(2)dz |.
(o)) ] Q=22 [l Oy @ e vt ()
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Let us solve the task j{[a—%—ljez“’(z) +e“’(z)}y'2(z)dz = max subject to y(0)=0.
0 a2 v

Following Euler’s equation, optimal function  (-) satisfies

- n !/ 14 1 !
Ae™" (v —w2)+(w —§w2j=0, ®)

where coefficient A=a,Q,/a, —

Coefficient A>>1, because Qq is usually large, so neglecting the last term in (5) we get y"—y'2 =0.
It follows that approximate solution of (5) has form ¢(z) =C -z, where C is a constant.

If C =1, then E{Q(T)} =Var{Q(T)} =0, so the lot will be sold during time T almost surely. This case

was considered in [4]. This is, so called, the basic zero-ending inventory dynamic price control model.
If C > 1, then the leftovers are possible almost surely. The expected stock level at the end of the period

Q(T)=Q((C-1)/C).
If C < 1, then almost surely the vender will be out of the resources before the end of the period, that is,
shortages are possible. Here, we consider this case.

2.2. The selling period’s duration

Let us consider the Laplace transform of the probability density function of the stock level
d(p,t)=E {exp(— pQ(t))} . By applying Ito’s formula, we obtain

dexp(-PQW) = p =2 -exp(- pQ(t))( i Jdt pexp(-pQ(),[ 2 2 aw. )
1 1

After averaging (6), we get

oD oD
CT -t)— 1 —=0. 7
( )6t+p(+2alpjap ()

CT -t
Solution of (7) has the form ®(p,t) =(p(%], where (p() is an unknown function and para-
+

meter B =2a, /a,. The density function f(q,0)=38(q—Q), it follows @(p,O)zw(%jzexp(—on) or
p+

CT - CT -
o(z)= exp(—%) . Finally, we get ®(p,t) = (PLP(TB'[)J = exp(—BEt(Jr—[m_:)QOJ .

By employing the inverse Laplace transform, we derive

f(q,t):exp(—B%]x

(8)
{S(Q) +Bexp[—ﬁ 1% j\/ o (CTZ “% '1{2\/ < ((t:zT _t)BZQoq H

t t’q

From (8) it follows that the cumulative distribution function of the length of time < it takes to sell lot Qo

F.(t)=P(x<t)= eXp(—B CTt_t Qo} :

Thus, P(t<CT) =1, that is, the lot will be sold by the time CT almost surely.

The average of the selling period’s duration E{t}= j (1-F.(t))dt=CT (1 eXp(BQO)jexp( B J J
X
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Let us consider the case BQ, >>1. In this case, we obtain

1 1
E =CT|1-— — . 9
iz ( BQ “{BQO B ©

2.3. The expected revenue taking shortages into account

Let us consider time point Ty, T1 = Txo, where X, =C (1—1/ BQO), that is, taking the main part of (9) as

the approximation of the average of the selling period’s duration. In simulation, we take the moment when
residual inventory fails to meet the requested purchase quantity of the terminal consumer.

In Figure 1 the results of illustrative simulation of the selling period’s duration are presented. The thinning
algorithm is used to generate a non-homogeneous Poisson process, and simulations conducted with 1000 itera-
tions, and the average outcomes reported; 09 < C <1, T =10, Qo =500, a1 =5, and Ay /A, =4, T =100;
purchases are uniformly distributed over (0,10) or exponentially distributed. The black curve is the theoretical
result, while the red curve represents the results of simulation in case of uniformly distributed purchases and
the blue curve represents the results in case of exponentially distributed purchases.

10 : : - : ‘ - : : s

Uniform purchases'distribution
= === Exponentially purchases’distribution
Theoretical curve

T

09 091 092 093 094 095 096 097 0.98 0.99 1
c

Fig. 1. T1 simulation, T = 10, Qo = 500, purchases are Uniform (0,10) or Exp(5)

The parameter C significantly affects the duration of shortages. When C < 0.9 caution is advised, as the
duration of shortages exceeds 10% of the entire period.
We consider the setting where unsatisfied demand is lost and assume that the demand intensity during

C . a 1 A a 1
shortages’ period is static; A(c(T,)) * —% ———— and ¢(T,)~cy| 1+ -2 — 2 :
g p ( (rl)) 2&12 T(C—XO) ( 1) 0( 7\11 Zalz 7\41T (C_XO)J
We define the average shortage penalty as follow
= A a 1 1-x
Ss =—a,c(T)r(c T-T)=—a0C,|1+-2 - =2 0
S 1 ( 1) ( (Tl))( 1) 1 0[ 7\41 2a12 XlT(C—XO)]C—XO
Thus, we get
= ! = Ao | X% 1 Qa —-a, |X a C—X
Sc<1= | E{c(t)A(t)}dt+Ss =cC 1+20 128 0712 —°——2In(—° -
C<1 g; { ( ) ( )} S OQO |:[ }blj C C}\.lT [[ alz C alz C
(10)
—a,c, 140 a22 1 17%
Ao 2af MT(C=X) )C =X
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The expected revenue is monotonically increasing with respect to C, and weighted expected revenue

SC<1
&Co
the results of illustrative simulation of weighted revenue’s dependence on C are presented for different sets of
the system’s parameters. We apply the thinning algorithm to generate a non-homogeneous Poisson process,
execute 1000 simulation iterations and take the average values. The black curves represent the theoretical
results, and the red curves are the simulation results.

I Theoretical results Simulation results I
Qo/a; =100, \o/N\ = 4, M, T = 100, ay/a? = 4/3, Uniform (0,10)
T T T T T T T T

depends on four dimensionless system’s parameters Qy /a,, A / Ay, \T, @, / @2, except C. In Figure 2

1 1 1 1 1 1 1 1
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Qo/ar = 100, A\/M1 = 5, T = 100, az/a? = 4/3, Uniform (0,10)
T T T T T T T T

490
485
480 1 1 1 1 1 1 1 1 1
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Sear/arey Qo/a1 = 100, X/ A1 = 5, T = 70, ay/a? = 4/3, Uniform (0,10)
) 450 F T T T T T T T T T
440} ~NAD Aa .
~AA = "4
oW
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Qo/a1 = 100, )\(]/)\1 = 5, )\1T = 70, (lf_)/(l? = 2, EXp(5)
445 T T T T T T T T
440
435

430

1
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
c

Fig. 2. Sca/ a,c, dependence on C for different sets of the system’s parameters

Comparing the first three subplots in Figure 2 we see that the increasing ratio A, /A, and AT leads

to an increase in price, thereby increasing the revenue significantly. Ratio a,/a;® determines the coefficient
of variation of purchases and has no significant impact on revenue, compare the last two subplots in Figure 2.

There exists a monotonically increasing relationship between the weighted revenue Scal &Cy and pa-

rameter C, that is, as C tends to 1 from below, the duration of shortages decreases proportionally, thus enabling
retailers to achieve higher revenue margins.

In Table numerical results of relative revenues calculation for the basic model Spasic / C4Q, and the

= . = A
general one Sc=1/¢yQ, in case of A,Ta, =Q, are presented; Spasic / CuQy ~1— . B(EQ and
1PXo
— 2ho(1-1/ —In
et /ooyt 220 PQ-IPQ)) 1 f2y 1|
MPBQy MT{ Ao (BQo)
Revenues for the basic and general models
ho/Aa 1 1 2 4 4
MT 400 400 200 100 100
BQo 2000/3 | 600 600 600 400

Shasic / €oQp 0,9985 | 0,9983 | 0,9967 | 0,9933 | 0,9900
Sc-1/6,Qp 0,9790 | 0,9775 | 0,9600 | 0,9251 | 0,9034
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The relative revenues for these two models are close to each other, the difference arises because of

The weighed revenue is a concave function with respect to a lot size. Figure 3 depicts weighted revenue

taking into account the lost sales.
Scal &, dependence on Qo/a; for C = 0,9, 0,95 and 0,99; A, /A, =4, AT =100, a, / af =4/3.
C=0,9

C=0,9 C=0,9
600f 600f 600}
-
SN ’ N AY
/ . /
500} ',' \‘ 500 / 500}
/ /
’
/ /1
400} ',' 400} I} 400}
B 1 1
Sm\l/ﬂm " 1
300f .,' 300F g 300}
I I
1
'l I
200} i 200F 4 200}
I I
1
.l I
100 ., 100F, 100
I I
0 . . ' o . . ' o . . ,
100 200 300 0 100 200 300 O 100 200 300
Q[)/ﬂl

0
Fig. 3. Sc«/ac, dependence on Qo/as

As C tends to 1 from below, the optimal inventory level exhibits an upward trend, accompanied

by a corresponding enhancement in the revenue.
3. Lot-weighted control model

Here, motivated by the form of the optimal weight function approximation, we are going to consider the
following intensity of price dependence:
cQ)
ar(c(t))=——, 11
(o) = (12)
where C > 0 is a constant, t < CT. We will refer to this function as a lot-weighted one.
Stock level process is described by the following stochastic differential equation:
cQ() 13, CQ(t)
dQ(t) =———=dt + |[—=——=dw(t). 12
M CT -t a CT -t ® (12)

Below we consider probabilistic characteristics of the stock level process and give the expression for

the expected revenues for C < 1.
3.1. Probabilistic characteristics of the stock level process

Expectation and variance of Q(t)
E{Q(1)} =Qua). Var {Q(1)} =Z2Qua()(2-9(0).
1

1- L

Cc
where g(t)=( CT) ,t<CT.
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Consistent with the preceding context, we obtain the density function
f(at) = exp(_BQog(t)JxLS(q) +Bexp[ —$Q, J\/g(t)Qo (290 ||
1-9() 1-9@®)) 1-g(t) 1-9()
It follows that the cumulative distribution function of t

F.()=P(c<t)= eXP(—BQo 1?(9%} (13)

Note, that from (13) we get P(t<CT) =1, that is, the shortages occur almost surely for C < 1. The

average of the selling period’s duration for C < 1

CT 1 g
E{i}= | (1—Fr(t))dt:CT[l—jexp[—BQ0 cjdz}
0 0 1-z
For BQ, >>1
L r(1+1/C)
E{t}~CT|1- —BQ,z¢ |dz |=CT|1-———2 |, 14
{} ( Jexp(-Quz° ) zj { (50, J (14)

where T'(-) is the gamma function.

3.2. The expected revenue taking shortages into account

Let us find the expected revenue for large lot size. Define the stationary (basic) price co as a price satis-
fying equation alk(co) =Q, /T . Denote deviations from the stationary price Ac(t) =c(t) —c,.

Using the Taylor expansion, we get a,A(c(t))=CQ(t)/(CT —t)=aA(cy)+aA'(cy)Ac(t) +... and

1 CQ(t) Qy
Act)~ alk’(co)(CT —t T j

Let us find conditional expectation E{Q(t)|Q(t)>0}, E{Q(t)} =(1-my(t))E{Q|Q(t) >0} =Qug(t),

where 1, (t) =P(t<t)= EXD(—BQO 1_9]gzt) j

_ CQua(®) Q
Q(t)>o}_(CT—t)(1—n0(t)) T

Consequently, E{Q(t)|Q(t)>0} = % E{% —%
— 1, —

CQu9(t) . Q _
(G )(CT —t)(1-mo (1))  an'(c)T
We take (14) as the approximation of the moment of shortages occurrence, T1 = Txo, Where

E{Ac(t)|Q(t) >0} =

r(1+1 r{+1/c
X =C 1—(+—Lg) ,and Q(T,) = LJFUC) . We assume the setting where unsatisfied demand is lost
(BQo) (BQ)

and the demand intensity during shortages’ period T —T, is static and defined by the intensity

CQ(Ty) _Q CIr(1+1/C) _Q
a(CT-T,) aT (C_Xo)(BQO)UC aT

C(Tl):Co +Ac(T)=¢cy + L (CQ(Tl) —%jz

A(e(Ty)) = =, ; the retail price during the shortage period

ar (c)\CT-T, T

1 Q| Cr(+1i/c)
=C == -1l|=c¢,.
°+a1w(c0) T [(C—XO)(BQO)”C J °
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The expected revenue considering the lost sales at [CT,T] for BQ, >>1

—_ CT CT
Sca =a,CyA(Cy) (j) (L= (t))dt + & (2 (co) + o2/ (o)) (j) (AL— 7y (1)) %

CQua(t) D _aca(c — %)=
RO =iy LSO e
=a1cok(c0)T(1+$)f,—(Ec::Z)(l—xO)J—alcok(co)T(l—xo).

Using linear approximation (4) and substituting Q, /T =aX,, we can rewrite (15) as follows

Sce<1=aCoAeT [1— k—o(l— Xo )] —a,CohoT (1- Xy ), or relative revenue

1
- r(1+1/C) (xo J Ao
Sca1/cyQy=C|1-————2 || =2 +1|-=.
C<1/ Yoo { (BQO)UC J 7\.1+ 7\‘1

Relative revenue Sc1/ coQy, monotonically increases with respect to C. Tending C to one from below

A 1 : = -
0~ Theresult is the same as Spasic / ¢,Q, taking into account that the last

MBQy  BQo
term appears due to the lost sales consideration.
Figure 4 depicts the relative revenues dependence on C for general (black lines) and lot-weighted (red
lines) weight functions.

we get Sce1/c,Qy =1-

I General WF Lot-weighted WF I
Xo/M =5, MT =100, Qo = 750, Uniform (0,10)
Ll Ll Ll Ll Ll Ll

| | /
0.5 1
e 1 1 1 1 1 1 1 1
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Xo/A1 =5, T = 140, 3Q = 1050, Uniform (0,10)
1 T T T T T T T %
0.5 { -
1 1 1 1 1 1 1 1
_ 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Se<1/coQo Xo/A1 =T, M T = 100, 8Qo = 1050, Uniform (0,10)
1 T T T T T T T %
0.5 1
OI 1 1 1 1 1 1 1 1 1
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Xo/A1 =8, 1T = 87.5,8Qy = 1050, Uniform (0,10)
1 T T T T T T T T
0 1 1 1 1 1 1 1 1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
c

Fig. 4. Relative revenue §c<1/c0Q0 dependence on C

Our analysis reveals a negligible revenue gap between the two models. The first two subplots in Figure 4
demonstrate that larger lot sizes mitigate this disparity. An increasing ratio A, /A, and decreasing AT result
in reduced revenue significantly, accompanied by a widening revenue gap between two models, compare the
last three subplots in Figure 4. However, as C tends to 1 from below, the relative revenues of both models
converge to 1, with the lot-weighted model consistently generating higher revenues.
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Conclusion

This study investigates dynamic pricing for perishable products under a heterogeneous compound Pois-
son demand, employing a diffusion approximation framework of the stock level process. Such approximation
works well for large lot sizes. Two near-optimal weight function models — general and lot-weighted — are
proposed to optimize revenues addressing shortages by adjusting coefficient C < 1 in the weight functions.

The general model, derived analytically using the linear dependence of the intensity on price, provides
closed-form expressions for the expected revenue and shortage duration, validated through simulation.
It exhibits heightened sensitivity to C and depends on three dimensionless inventory system’s parameters:
BQy. Ao /A, and AT . The modified, lot-weighted model, ensures more stable operation of the inventory

system, depends only two parameters BQ,, A,/ A;, and achieves a little higher revenue compared to the general

model for C close to 1.

Numerical analyses demonstrate that both models enable the revenue optimization while balancing the
shortages occurrence. Small values of the adjustable coefficient can lead to a significant reduction in revenue.
These two control models can be used in case of the supply chain disruption during the sales period, which
may lead to the need to shorten the period. Using these models allows us to sell all inventory by the new
deadline and estimate the losses. The lot-weighed model has some advantages comparing with the general one:
its relative revenue does not depend on A,T , and at the beginning of the period we set basic price co corre-

sponding to basic intensity Ao.
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