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Abstract. We address the management of a single product over a finite time horizon, with customer arrivals  
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Аннотация. Рассматривается задача управления запасами единичного продукта на конечном временном 

горизонте с гетерогенным пуассоновским процессом спроса. Интенсивность спроса зависит от уровня запаса 

и весовой функции от времени, создающей возможность дефицита товара. Управляющим параметром высту-

пает розничная цена. В рамках диффузионной аппроксимации уровня запасов и линейной зависимости интен-

сивности спроса от розничной цены решается задача максимизации средней прибыли относительно весовой 

функции и партии товара. Рассмотрено два вида весовых функций, приведены численные результаты оптими-

зации и имитационного моделирования. 
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1. Introduction and problem statement 

 

Research on inventory models for perishables dates back to the 1960s. A comprehensive review of fresh 

product supply chain management was provided in [1, 2], highlighting key developments in the field. Recent 

advancements in inventory theory have increasingly incorporated dynamic pricing mechanisms, with particular 

emphasis on demand-driven market environments [3]. 

In [4], we proposed a basic dynamic pricing control model, which allow us, triggering purchases, to sell 

all the perishable product at hand during its lifetime almost surely. In [5], we introduced a multiplicative  

coefficient into the basic model. In [6], we considered more complicated weight function introducing a power-

law coefficient.  

The presence of the adjustable coefficients in the weight functions allows us to use a linear approxima-

tion of the intensity-of-price dependence and optimize the zero-ending inventory retailing process. Moreover, 

the coefficients can help us also to solve the problem of fitting the demand rate in a real-life situation. This 

problem is the most challenging one in dynamic pricing, see, for example, [7]. 

In this paper, we do not specify the type of weight function, and we get the equation for the optimal 

weight function, which maximizes the expected revenue, and consider its approximate solution as one near-

optimal weight function. This near-optimal weight function almost surely implies shortages depending on the 

range of the unknown constant it contains. Firstly, we consider the task of the expected revenue maximization 

with respect to the constant considering lost sales. Secondly, we modify the optimal weight function approxi-

mation so that the price at the beginning of the sales period becomes close to the base price and obtain the 

expected revenue in case of possible shortages. 

Inventory shortages systems are generally classified into two categories: backlog systems and lost-sales 

systems [8]. In lost-sales systems, actual sales often underestimate true demand, resulting in inaccurate demand 

forecasts [9]. Additionally, lost sales can give rise to rationing and gaming behaviors, both of which contribute 

to the so-called bullwhip effect in supply chains. This effect causes instability, undermining operational  

efficiency across industries [10]. From both academic and practical perspectives, the assumption of lost sales 

is often considered more appropriate than backlogging [11]. In this study, we adapt a framework where unmet 

demand is treated as lost. 

We begin by outlining the model's assumptions and notations. The supply chain under consideration 

consists of a single vendor and customers. Acting as a monopolist, the vendor aims to maximize revenue by 

procuring a fixed lot size Q0 at a unit cost d and selling it over a predetermined period T. Inventory replenish-

ment is not permitted within this fixed period. 

The demand is assumed to be a compound Poisson process with intensity ( ( ))c t , where ( )c c t=  is  

a dynamic retail price per unit, the orders are independent identically distributed continuous random variables 

with the first and second moments 1a  and 2a  respectively. 

The stochastic properties of the sales process and the expected revenue are determined using a diffusion 

approximation of the stock level process. This approach enables us to derive analytically manageable expres-

sions. Thus, we assume that the stock level process satisfies the following equation: 

1 2( ) ( ( )) ( ( )) ( ),dQ t a c t dt a c t dw t= −  +   

where ( )w   is the Wiener process. 

 

2. Near-Optimal weight function for a large lot size 

 

We consider the following model for controlling the intensity of customers’ flow through dynamic pricing: 

 ( )
( )

1

( )
( )

/

Q t
a c t

T t T
 =


, (1) 

where ( )   is an unknown weight function,  0,t T . As stated in [12], "formulating problems in the framework 

of intensity control is considered a promising approach." We will call control model (1) as a general one. 
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The idea of such a model of intensity control as well as a lot of results in inventory control modelling 

belongs to Alexander Fedorovich Terpugov (1939-2009), former Head of the Department of Probability  

Theory and Mathematical Statistics at Tomsk State University, outstanding scientist and teacher.  

Thus, the stock level process satisfies the following equation: 

( ) ( )
2

1

( ) ( )
( ) ( ).

/ /

aQ t Q t
dQ t dt dw t

T t T a T t T
= − +

 
 

 

2.1. The expected revenue and near-optimal weight function 
 

It is easy to show that the expectation 

   ( ) 0( ) ( ) exp ,E Q t Q t Q t T= = −  (2) 

where 1

0

( ) ( ) .
z

z x dx− =   

Denote  2 2( ) ( ) .Q t E Q t=  Applying Ito’s formula and averaging, we get 

( )

( ) 
( )

2 2
2 0

1

exp( ) ( )
2

/ /

a Q t TdQ t Q t

dt T t T a T t T

−
= − +

 
 

subject to 2 2
0(0)Q Q= .  

It follows that the variance  

 ( )  ( )  ( ) ( )2 0

1

exp 1 exp .
a Q

Var Q t t T t T
a

= − − −  (3) 

Let us consider linear approximation of the intensity-of-price dependence 

 ( ) 0
0 1

0

( )
,

c t c
c

c

−
 =  −   (4) 

where c0 is a stationary price corresponding stationary intensity 0  and parameter 1 0   characterizes the 

sensitivity of ( )   to relative price‘s deviations from stationary price c0. 

Linear dependence of the customers’ flow intensity on the price is common in literature, for example, 

in [13] the demand rate is supposed to be a linear function of the price. 

From (1) and (4) we get 

( )
0

0
1 1 1

( )
( ) 1

/

Q t
c t c

a T t T

 
= + −     

. 

The average revenue at time unit 

( ) ( ) 
( ) ( ) ( ) ( )

2
0 0 0

1 0 0 22
1 1 1 1 1 1

1 ( ) ( ) ( ) ( )
1 1

/ / / /

cQ t Q t Q t Q t
E c t a c c E c

a T t T T t T T t T a T t T

      
 = + − = + −                

. 

The expected revenue over the cycle 

 

( )

1
0

1 1 1
( ) 2 ( ) 2 ( ) 20 0 2 2

0 1 0 2
0 0 01 1 1 1

( ) ( )

1
( ) ( ) ( ) .

T

z z z

S E a c t t dt

c Q a a
e z dz Q e z dz e z dz

a T a a T

− −  −

=  =

 
  =  +   − −  −         

 

Taking into account 
1

( ) (1)

0

( ) 1ze z dz e− − = − , we get 

( )( )
1

(1) 2 ( ) 2 ( ) 20 0 2 2
0 1 0 2

0 01 1 1 1

1
1 ( ) ( ) .

z
z zc Q a a

S e Q e z dz e z dz
a T a a T

− −  −
 

  =  +  − − −  −       
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Let us solve the task 
1

2 ( ) ( ) 21 0

( )0 2

1 ( ) maxz za Q
e e z dz

a

−  −

 

  
− − +     

   

 subject to (0) 0 = . 

Following Euler’s equation, optimal function ( )   satisfies 

 2 21
( ) 0,

2
Ae−  

    −  +  −  = 
 

 (5) 

where coefficient 1 0 2/ 1A a Q a= − . 

Coefficient 1A , because Q0 is usually large, so neglecting the last term in (5) we get 2 0  −  = .  

It follows that approximate solution of (5) has form ( )z C z = − , where C is a constant. 

If C = 1, then    ( ) ( ) 0E Q T Var Q T= = , so the lot will be sold during time T almost surely. This case 

was considered in [4]. This is, so called, the basic zero-ending inventory dynamic price control model. 

If C > 1, then the leftovers are possible almost surely. The expected stock level at the end of the period 

( ) ( )( )0 1 / .Q T Q C С= −  

If C < 1, then almost surely the vender will be out of the resources before the end of the period, that is, 

shortages are possible. Here, we consider this case. 

 

2.2. The selling period’s duration 

 

Let us consider the Laplace transform of the probability density function of the stock level 

( ) ( , ) exp ( )p t E pQ t = − . By applying Ito’s formula, we obtain 

 ( ) ( ) ( )2 2

1 1

( ) ( )
exp ( ) exp ( ) 1 exp ( ) ( )

2

a aQ t Q t
d pQ t p pQ t p dt p pQ t dw t

CT t a a CT t

 
− = − + − − 

− − 
. (6) 

After averaging (6), we get  

 ( ) 2

1

1 0
2

a
CT t p p

t a p

  
− + + = 

  
. (7) 

Solution of (7) has the form 
( )

( , ) ,
p CT t

p t
p

 − 
 =  

+  
 where ( )   is an unknown function and para-

meter 1 22 /a a = . The density function ( )0( ,0)f q q Q=  − , it follows ( )0( ,0) exp
pCT

p pQ
p

 
 =  = − 

+  
 or 

0( ) exp
zQ

z
CT z

 
 = − 

− 
. Finally, we get 

( ) ( )
0( , ) exp

p CT t p CT t
p t Q

p pt CT

 −    − 
 =  = −   

+  +    
. 

By employing the inverse Laplace transform, we derive 

 

( )

( ) ( )

0

0 20
1 02 2

( , ) exp

( ) exp 2 .

CT t Q
f q t

t

CT CT t Q CT CT tCTQ
q I Q q

t t q t

 − 
= −  

 

 − −  
   +  −       

 (8) 

From (8) it follows that the cumulative distribution function of the length of time τ it takes to sell lot Q0 

0( ) ( ) exp
CT t

F t P t Q
t



− 
=   = − 

 
. 

Thus, ( ) 1P CT  = , that is, the lot will be sold by the time CT almost surely. 

The average of the selling period’s duration ( ) ( )
1

0
0

0 0

{ } 1 ( ) 1 exp exp
CT Q

E F t dt CT Q dx
x



 − 
 = − = −    

  
. 
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Let us consider the case 0 1Q  . In this case, we obtain 

 
0 0

1 1
{ } 1 .E CT o

Q Q

  
 = − +      

  (9) 

 

2.3. The expected revenue taking shortages into account 

 

Let us consider time point T1, T1 = Tx0, where ( )0 01 1/x C Q= −  , that is, taking the main part of (9) as 

the approximation of the average of the selling period’s duration. In simulation, we take the moment when 

residual inventory fails to meet the requested purchase quantity of the terminal consumer. 

In Figure 1 the results of illustrative simulation of the selling period’s duration are presented. The thinning 

algorithm is used to generate a non-homogeneous Poisson process, and simulations conducted with 1000 itera-

tions, and the average outcomes reported; 0,9 < C < 1, 10T = , Q0 = 500, a1 = 5, and 0 1 1/ 4,  100T  =  = ; 

purchases are uniformly distributed over (0,10) or exponentially distributed. The black curve is the theoretical 

result, while the red curve represents the results of simulation in case of uniformly distributed purchases and 

the blue curve represents the results in case of exponentially distributed purchases. 
 

 

Fig. 1. T1 simulation, T = 10, Q0 = 500, purchases are Uniform (0,10) or Exp(5) 

 

The parameter C significantly affects the duration of shortages. When C < 0.9 caution is advised, as the 

duration of shortages exceeds 10% of the entire period. 

We consider the setting where unsatisfied demand is lost and assume that the demand intensity during 

shortages’ period is static; 
( )

2
1 2

01

1
( ( ))

2

a
c T

T C xa
 

−
 and ( )

( )
0 2

1 0 2
1 1 01

1
1

2

a
c T c

T C xa

 
 + −    − 

. 

We define the average shortage penalty as follow 

( )
( )

0 02
1 1 1 1 1 0 2

1 1 0 01

11
( ) ( ( )) 1 .

2
s

xa
S a c T c T T T a c

T C x C xa

  −
= −  − = − + −    − − 

  

Thus, we get 

 

 

( )

1
0 0 0 1 2 0 02

1 0 0 2 2
0 1 1 1 1

0 02
1 0 2

1 1 0 01

1
( ) ( ) 1 ln

11
1 .

2

T

C s
x Q a a x C xa

S E c t t dt S c Q
C C T C Ca a

xa
a c

T C x C xa



     − − 
=  + = + − − −                  

  −
− + −    − − 

 (10) 
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The expected revenue is monotonically increasing with respect to C, and weighted expected revenue 

1

1 0

CS

a c


 depends on four dimensionless system’s parameters 

2
0 1 0 1 1 2 1/ ,  / , ,  / ,Q a T a a    except C. In Figure 2 

the results of illustrative simulation of weighted revenue’s dependence on C are presented for different sets of 

the system’s parameters. We apply the thinning algorithm to generate a non-homogeneous Poisson process, 

execute 1000 simulation iterations and take the average values. The black curves represent the theoretical 

results, and the red curves are the simulation results. 
 

 

Fig. 2. 1 1 0/CS a c  dependence on C for different sets of the system’s parameters 

 

Comparing the first three subplots in Figure 2 we see that the increasing ratio 0 1/   and 1T  leads  

to an increase in price, thereby increasing the revenue significantly. Ratio a2/a1
2 determines the coefficient  

of variation of purchases and has no significant impact on revenue, compare the last two subplots in Figure 2. 

There exists a monotonically increasing relationship between the weighted revenue 1 1 0/CS a c  and pa-

rameter C, that is, as C tends to 1 from below, the duration of shortages decreases proportionally, thus enabling 

retailers to achieve higher revenue margins.  

In Table numerical results of relative revenues calculation for the basic model 0 0/basicS c Q  and the 

general one 1 0 0/CS c Q=  in case of 0 1 0Ta Q =  are presented; 0
0 0

1 0

/ 1basicS c Q
Q


 −

 
 and 

( )( )

( )

0 0 0 1
1 0 0 2

1 0 1 0 0

2 1 1/ ln 1 1
/ 1 1 .C

Q Q
S c Q

Q T Q
=

  −  −  
  + − + −
      

 

Revenues for the basic and general models  

λ0/λ1 1 1 2 4 4 

λ1T 400 400 200 100 100 

βQ0 2000/3 600 600 600 400 

0 0/basicS c Q  0,9985 0,9983 0,9967 0,9933 0,9900 

1 0 0/CS c Q=  0,9790 0,9775 0,9600 0,9251 0,9034 
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The relative revenues for these two models are close to each other, the difference arises because of 

taking into account the lost sales.  

The weighed revenue is a concave function with respect to a lot size. Figure 3 depicts weighted revenue 

1 1 0/CS a c  dependence on Q0/a1 for C = 0,9, 0,95 and 0,99; 
2

0 1 1 2 1/ 4,  100,  / 4 / 3T a a  =  = = .  

 

 

Fig. 3. 1 1 0/CS a c  dependence on Q0/a1 

 

As C tends to 1 from below, the optimal inventory level exhibits an upward trend, accompanied  

by a corresponding enhancement in the revenue. 

 

3. Lot-weighted control model 

 

Here, motivated by the form of the optimal weight function approximation, we are going to consider the 

following intensity of price dependence: 

 ( )1

( )
( ) ,

CQ t
a c t

CT t
 =

−
 (11) 

where C > 0 is a constant, t < CT. We will refer to this function as a lot-weighted one. 

Stock level process is described by the following stochastic differential equation: 

 2

1

( ) ( )
( ) ( ).

aCQ t CQ t
dQ t dt dw t

CT t a CT t
= − +

− −
 (12) 

Below we consider probabilistic characteristics of the stock level process and give the expression for 

the expected revenues for C < 1. 

 

3.1. Probabilistic characteristics of the stock level process 

 

Expectation and variance of Q(t) 

( )  ( )  ( )2
0 0

1

( ),  ( ) 1 ( ) ,
a

E Q t Q g t Var Q t Q g t g t
a

= = −  

where ( ) 1 , .

C
t

g t t CT
CT

 
= −  

 
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Consistent with the preceding context, we obtain the density function 

0 00 0
1

( ) / 2 ( )( )
( , ) exp ( ) exp .

1 ( ) 1 ( ) 1 ( ) 1 ( )

g t Q q g t Q qQ g t Q
f q t q I

g t g t g t g t

     − −
=   +        − − − −     

 

It follows that the cumulative distribution function of τ 

 0

( )
( ) ( ) exp .

1 ( )

g t
F t P t Q

g t


 
=   = − 

− 
 (13) 

Note, that from (13) we get ( ) 1P CT  = , that is, the shortages occur almost surely for C < 1. The 

average of the selling period’s duration for C < 1 

( )
1

0
0 0

{ } 1 ( ) 1 exp .
1

CCT

C

z
E F t dt CT Q dz

z


  
 = − = − −      −  

 

For 0 1Q   

 ( )
( )

( )

1

0 1/
0 0

1 1/
{ } 1 exp 1 ,C

C

C
E CT Q z dz CT

Q

  + 
   − − = −      

 (14) 

where ( )   is the gamma function. 

 

3.2. The expected revenue taking shortages into account 

 

Let us find the expected revenue for large lot size. Define the stationary (basic) price c0 as a price satis-

fying equation ( )1 0 0 /a c Q T = . Denote deviations from the stationary price 0( ) ( )c t c t c = − . 

Using the Taylor expansion, we get ( ) ( ) ( ) ( )1 1 0 1 0( ) ( ) / ( )a c t CQ t CT t a c a c c t = − =  +   +  and 

( )
0

1 0

1 ( )
( )

QCQ t
c t

a c CT t T

 
  −  − 

. 

Let us find conditional expectation  ( ) | ( ) 0E Q t Q t  ,   ( )  0 0( ) 1 ( ) | ( ) 0 ( ),E Q t t E Q Q t Q g t= −   =  

where 0 0

( )
( ) ( ) exp .

1 ( )

g t
t P t Q

g t

 
 =   = − 

− 
  

Consequently,  
( )

0

0

( )
( ) | ( ) 0 ,

1 ( )

Q g t
E Q t Q t

t
 =

− 
 

( )( )
0 0 0

0

( )
( ) 0 ,

1 ( )

Q CQ g t QCQ
E Q t

CT t T CT t t T

 
−  = − 

− − −  
 

 
( )( )( ) ( )

0 0

1 0 0 1 0

( )
( ) ( ) 0 .

1 ( )

CQ g t Q
E c t Q t

a c CT t t a c T
  = −

  − −  
 

We take (14) as the approximation of the moment of shortages occurrence, T1 = Tx0, where 

( )

( )
0 1/

0

1 1/
1

C

C
x C

Q

  +
 = −
  

, and ( )
( )

( )

0
1 1/

0

1 1/

C

Q C
Q T

Q

 +
=


. We assume the setting where unsatisfied demand is lost 

and the demand intensity during shortages’ period 1T T−  is static and defined by the intensity 

( )

( )

( )

( )( )

1 0 0
1 01/

1 1 1 10 0

1 1/
( ( ))

C

CQ T C CQ Q
c T

a CT T a T a TC x Q

 +
 = = = = 

− − 
; the retail price during the shortage period 

( )
( )

( )

( )

( )( )

01
1 0 1 0

1 0 1

0
0 01/

1 0 0 0

( )1
( )

1 1 /1
1 .

C

QCQ T
c T c c T c

a c CT T T

C CQ
c c

a c T C x Q

 
= +  = + − = 

 − 

  +
 = + − =
  −  

. 
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The expected revenue considering the lost sales at  ,CT T  for 0 1Q   

 

( ) ( ) ( )( )

( )( )( ) ( )
( ) ( )

( )
( )

( )
( ) ( ) ( )

1 1 0 0 0 1 0 0 0 0
0 0

0 0
1 0 0 0

1 0 0 1 0

0
1 0 0 0 1 0 0 0

0 0

(1 ( ))  (1 ( ))

( )
1

1 ( )

1 1 1 .

CT CT

CS a c c t dt a c c c t

CQ g t Q
dt a c c T x

a c CT t t a c T

c
a c c T x a c c T x

c c

 =  −  +  +  −   

 
 − −  − =    − −   

 
=  + − −  −   

 (15) 

Using linear approximation (4) and substituting 0 1 0/Q T a=  , we can rewrite (15) as follows 

( ) ( )0
1 1 0 0 0 1 0 0 0

1

1 1 1 ,CS a c T x a c T x
 

=  − − −  − 
 

 or relative revenue 

( )

( )
0 0

1 0 0 1/
1 10

1 1/
/ 1 1 .C

C

C
S c Q C

Q


  +   
 = − + − 
      

 

Relative revenue 1 0 0/CS c Q  monotonically increases with respect to C. Tending C to one from below 

we get 0
1 0 0

1 0 0

1
/ 1CS c Q

Q Q



→ − −

  
. The result is the same as 0 0/basicS c Q  taking into account that the last 

term appears due to the lost sales consideration. 

Figure 4 depicts the relative revenues dependence on C for general (black lines) and lot-weighted (red 

lines) weight functions. 
 

 

Fig. 4. Relative revenue 1 0 0/CS c Q  dependence on C 

 

Our analysis reveals a negligible revenue gap between the two models. The first two subplots in Figure 4 

demonstrate that larger lot sizes mitigate this disparity. An increasing ratio 0 1/   and decreasing 1T  result 

in reduced revenue significantly, accompanied by a widening revenue gap between two models, compare the 

last three subplots in Figure 4. However, as C tends to 1 from below, the relative revenues of both models 

converge to 1, with the lot-weighted model consistently generating higher revenues. 
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Conclusion 

 

This study investigates dynamic pricing for perishable products under a heterogeneous compound Pois-

son demand, employing a diffusion approximation framework of the stock level process. Such approximation 

works well for large lot sizes. Two near-optimal weight function models – general and lot-weighted – are 

proposed to optimize revenues addressing shortages by adjusting coefficient C < 1 in the weight functions. 

The general model, derived analytically using the linear dependence of the intensity on price, provides 

closed-form expressions for the expected revenue and shortage duration, validated through simulation.  

It exhibits heightened sensitivity to C and depends on three dimensionless inventory system’s parameters:  

0Q , 0 1/  , and 1T . The modified, lot-weighted model, ensures more stable operation of the inventory 

system, depends only two parameters 0Q , 0 1/  , and achieves a little higher revenue compared to the general 

model for C close to 1. 

Numerical analyses demonstrate that both models enable the revenue optimization while balancing the 

shortages occurrence. Small values of the adjustable coefficient can lead to a significant reduction in revenue. 

These two control models can be used in case of the supply chain disruption during the sales period, which 

may lead to the need to shorten the period. Using these models allows us to sell all inventory by the new 

deadline and estimate the losses. The lot-weighed model has some advantages comparing with the general one: 

its relative revenue does not depend on 1T , and at the beginning of the period we set basic price c0 corre-

sponding to basic intensity λ0. 
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