ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

2025 Управление, вычислительная техника и информатика Tomsk State University Journal of Control and Computer Science

№ 71

Научная статья УДК 621.396.96

doi: 10.17223/19988605/71/10

Применение УПС-фильтра при решении задачи обнаружения в режиме активной локации

Игорь Михайлович Рудько

Институт проблем управления им. В.А. Трапезникова Российской академии наук, Москва, Россия, migor-rudko@mail.ru

Аннотация. Для режима активной локации проводится сравнение двух алгоритмов обнаружения при использовании ими энергетического критерия обнаружения — «классической» задачи проверки двух простых гипотез и применения фильтра на основе порядковой статистики (УПС-фильтра), которым заменяется интегратор в «классической» задаче. Рассматривается два режима — обработка единичного импульса и обработка пачки импульсов. Показано, что при фиксированной ложной тревоге применение УПС-фильтра обеспечивает существенный выигрыш в вероятности обнаружения.

Ключевые слова: активная локация; порядковая статистика; проверка статистических гипотез; системы обнаружения.

Для цитирования: Рудько И.М. Применение УПС-фильтра при решении задачи обнаружения в режиме активной локации // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2025. № 71. С. 103–111. doi: 10.17223/19988605/71/10

Original article

doi: 10.17223/19988605/71/10

Using the TOS-filter in solving the detection problem in active location mode

Igor M. Rudko

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation, bigor-rudko@mail.ru

Abstract. For the active location mode, a comparison is made of two detection algorithms using the energy detection criterion - the "classical" task of checking two simple hypotheses and the use of a filter based on order statistics (TOS- filter), which replaces the integrator in the "classical" task. Two modes are considered - processing a single pulse and processing a pulse train. It is shown that with a fixed false alarm, the use of the TOS-filter provides a significant gain in the detection probability.

 $\textbf{Keywords:} \ \text{active location; order statistics; testing statistical hypotheses; detection systems.}$

For citation: Rudko, I.M. (2025) Using the TOS-filter in solving the detection problem in active location mode. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 71. pp. 103–111. doi: 10.17223/19988605/71/10

Введение

Задача активной локации (АЛ) — обнаружение лоцируемого объекта-цели, определение расстояния до нее, угловых координат цели, направления ее движения и ее скорости. Задача решается при использовании сигналов, зондирующих цель неконтактным методом, — облучением ее, получением отраженного от цели (рассеянного целью) сигнала и его обработкой, которая на этапе первичной обработкой включает операции обнаружения и измерения параметров сигналов. Совокупность оценок параметров сигналов образует локационную отметку цели.

Известно два основных способа обработки зондирующих сигналов (3C) в режиме АЛ. Первый – непосредственное измерение временного интервала между моментами излучения и возращения отраженного от цели сигнала. Второй способ состоит в вычислении функции взаимной корреляции между посланным и возвращенным сигналами. Преимуществом этого способа является возможность работы с длительными 3C [1]. Для решения задач АЛ применяются различные виды 3C: импульсные, непрерывные, с внутриимпульсной модуляцией и без таковой, когерентные и некогерентные, одиночные и пачечные [2. C. 33], узкополосные и сверхширокопосные (широкополосные хаотические) 3C [1].

На этапе первичной обработки для достижения удовлетворительной вероятности обнаружения $(P_{\text{обн}})$ для всех вариантов 3С бывает необходимо производить энергетическое накопление (интегрирование, суммирование) возвращенного сигнала. Во многих системах АЛ для достижения удовлетворительной достоверности обнаружения бывает необходимо облучать цель серией импульсов. [3. С. 293].

В настоящей работе исследуется возможность замены интегратора (сумматора) в энергетическом приемнике (ЭП) системы АЛ на фильтр на основе усеченных порядковых статистик (УПС-фильтр) [4, 5], который позволяет существенно увеличить $P_{\text{обн}}$ по сравнению с ЭП.

Цифровая обработка сигнала, к которой относится УПС-фильтрация, в настоящее время возможна только для относительно низкочастотных сигналов, ограниченных сотнями килогерц (гидроакустическая АЛ) [1].

До настоящего времени нет работ, посвященных использованию порядковых статистик в задачах обнаружения в режиме АЛ.

1. Обнаружение сигнала в задачах активной локации

Решение задачи обнаружения (этап первичной обработки) сводится к принятию решения о наличии или отсутствии цели. В реальных условиях на входе приемного устройства локатора наблюдается смесь полезного сигнала и шума. Это приводит к случайному характеру результатов обнаружения и указывает на статистический характер задачи обнаружения. Полной статистической характеристикой колебаний шума является плотность вероятности. Колебания шума описывают также с помощью корреляционной функции и спектральной плотности мощности. При синтезе оптимальных алгоритмов обработки АЛ сигнала, кроме корреляционных и спектральных характеристик шума, требуется знание плотности вероятности его распределения.

Задача обнаружения сводится к задаче проверки двух гипотез: H_0 — принимается только шум, H_1 — принимается смесь сигнала и шума. Решение о наличии сигнала принимается по критерию Неймана—Пирсона, согласно которому оптимальная система обнаружения должна максимизировать вероятность правильного обнаружения $P_{\text{обн}}$ при фиксированной вероятности ложной тревоги $P_{\text{лт}}$, т.е. $P_{\text{обн}}$ = max при $P_{\text{лт}}$ = const [2. C. 77].

Разрешающая способность АЛ определяется величиной полосы частот ΔF , занимаемой сигналом. Произведение $B = \Delta F \tau$, где τ – длительность посылки, определяющее энергетическую эффективность зондирующего сигнала, называют базой сигнала. База простого импульсного сигнала равна единице. Характерная база сложных сигналов, используемых в АЛ, составляет величину порядка 100 [6]. Критерием возможности обнаружения сигнала на фоне шумов различного происхождения является соотношение сигнал/шум q^2 , определяемое как

$$q^2 = 2 \int_{z} P_{\rm in} dt / P_{\rm N}, \qquad (1)$$

где $P_{\rm in}$ — мощность полезного сигнала на входе приемного устройства локатора, а $P_{\rm N}$ — спектральная плотность мощности шумов. Интегрирование проводится по времени посылки сигнала τ . Если излучаемая и, соответственно, принимаемая мощность зондирующего сигнала в течение времени посылки τ постоянна, а помеха реализуется в полосе частот Δf , занимаемой сигналом, то формулу (1) можно записать следующим образом [6]:

$$q^2 = \frac{P_{\rm in}}{P_{\rm N}} \Delta f \, \tau = \frac{P_{\rm in}}{P_{\rm N}} B \,. \tag{2}$$

Таким образом, возможность обнаружить сигнал при оптимальном приеме с заданными значениями $P_{\text{обн}}$ и $P_{\text{лт}}$ определяется лишь отношением энергии сигнала к спектральной плотности шума [2. С. 95].

2. Фильтр на основе усеченных порядковых статистик (УПС-фильтр)

Пусть имеется выборка из m элементов случайного процесса $X - \{X_1, ..., X_i, ..., X_m\}$. Порядковая статистика $X_{(i)}$, где $1 \le i \le m$, — это упорядоченные величины статистики X_i такие, что $X_{(1)} \le X_{(2)} \le ... \le X_{(i)} \le ... \le X_{(m)}$. Если случайные величины X_i статистически независимы и одинаково распределены, то случайные величины $X_{(i)}$ зависимы из-за неравенств между ними.

Известно [7. С. 79], что при больших значениях m достаточно точным приближением к математическому ожиданию элемента порядковой статистики с номером μ_j является значение, удовлетворяющее уравнению P(x) = j/(m+1), где P(x) — функции распределения случайной величины x. Если ввести в рассмотрение функцию Q такую, что Q[P(x)] = x, то получим асимптотическую формулу $\mu_j \sim Q(j/(m+1))$, где $1 \le j \le m$, т.е. математические ожидания μ_j приближенно равны квантилям функции распределения P(x), взятым с равномерным шагом.

Как этот факт можно использовать покажем на примере.

Рассмотрим случайные процессы X_0 и X_1 , имеющие χ^2 -распределение с n степенями свободы, но разные дисперсии ${\sigma_0}^2=1$ и ${\sigma_1}^2=1,2$. Сравним выборки этих процессов при m=8 и n=16 и определим математические ожидания их порядковых статистик.

Математические ожидания µ_i имеют следующие значения

$$\mu_{0j} - \{ 9,553 \ 11,498 \ 13,083 \ 14,580 \ 16,122 \ 17,840 \ 19,956 \ 23,099 \};$$

 $\mu_{1i} - \{11,464 \ 13,797 \ \textbf{15,699} \ \textbf{17,496} \ \textbf{19,347} \ \textbf{21,408} \ \textbf{23,947} \ \textbf{27,720} \}.$

Сравним статистические свойства случайных величин Z и W, сформированных из случайной выборки $X_{(i)}$, $1 \le i \le m$, двумя различными способами:

1)
$$Z = \sum_{i=1}^m X_{(i)} = \sum_{i=1}^m X_i$$
 — имеет χ^2 -распределение с $2N = 2nm$ степенями свободы, математическим ожиданием $\mu_Z = 2nm\sigma^2$ и дисперсией $\sigma_Z^2 = 4nm\sigma^2$, и в силу центральной предельной теоремы при достаточно больших значениях m ее функция плотности распределения нормализуется: $Z \sim N(\mu_Z, \sigma_Z^2)$.

2)
$$W = \sum_{i=1}^{m} X_{(i)}$$
, где k – плавающий порог, определяемый из условия

$$k = \arg\min_{i} \left| h - X_{(i)} \right|, \tag{3}$$

h — фиксированный порог. При достаточно больших значениях m функция плотности распределения W также нормализуется: $W \sim N(\mu_W, \sigma_W^2)$.

Например, если задать фиксированный порог h равным медиане $X_0 - h = 15,338$, то, рассматривая приведенные выше значения математических ожиданий μ_j как выборочные значения, из (3) получим для $X_0 - k_0 = 5$, а для $X_1 - k_1 = 3$.

Если датчиком случайных чисел сгенерировать выборки рассматриваемых процессов и построить их гистограммы, то получим гистограммы, вид которых приведен на рис. 1, a. На рис. 1, b – эти же гистограммы, нормированные с учетом «веса» отброшенных членов вариационного ряда. (Вес отбро-

шенных членов можно учесть, введя
$$\delta$$
-функцию в нуле с соответствующим весом $P_0 = \delta(0) \int_0^h f(x) dx$.)

Из приведенных рисунков видно, что гистограммы процессов W_0 и W_1 «раздвинулись» относительно процессов Z_0 и Z_1 . Следовательно, если случайный процесс X_0 описывает помеху, а случайный процесс X_1 – смесь помехи и сигнала, то (при фиксированной $P_{\rm лr}$) $P_{\rm обн}$ сигнала для процесса W больше, чем для процесса Z.

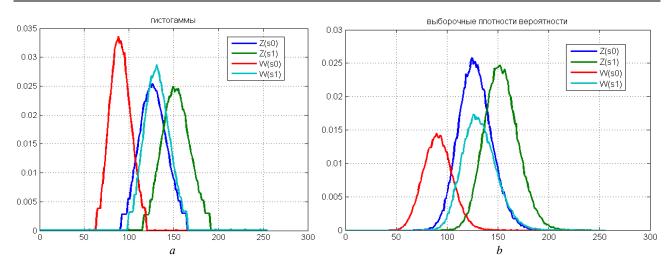


Рис. 1. Гистограммы процессов (Z_0 и Z_1) и (W_0 и W_1): a – исходные нормированные гистограммы, b – гистограммы, нормированные с учетом отброшенных членов вариационного ряда Fig. 1. Histograms of processes (Z_0 and Z_1) and (W_0 and W_1): a) initial normalized histograms, b) histograms normalized taking into account the discarded terms of the variation series

Алгоритм работы УПС-фильтра основан на этом свойстве порядковых статистик. Теоретические основы алгоритма и результаты его моделирования приведены в работах [4, 5], примеры использования – локация в пассивном режиме в [8], обнаружение дискретных составляющих спектра в частотной области в [9].

Алгоритм работы УПС-фильтра:

- 1. Время интегрирования (равное длительности посылки) разбивается на m одинаковых интервалов, в каждом из которых проводится интегрирование (накопление энергии), т.е. вычисляется последовательность выборок $X \sim \{X_1, \ldots, X_i, \ldots, X_m\}$. Накапливается c оцениваемых выборок X.
- 2. По накопленным выборкам строится матрица \mathbf{X}_{ik} размерностью m строк на c столбцов (c-«глубина» матрицы памяти $)-\{X_1,\ldots,X_i,\ldots,X_m\}^{\mathrm{T}}_k$, где $1\leq k\leq c$.
- 3. В каждом столбце матрицы \mathbf{X}_{ik} строится порядковая статистика $X_{(i)k}$, где $1 \le i \le m$, упорядоченные величины статистики X_i такие, что $X_{(1)} \le X_{(2)} \le ... \le X_{(i)} \le ... \le X_{(m)}$.
- 4. В каждой строке полученной матрицы $\mathbf{X}_{(i)k}$ определяются оценки математических ожиданий (вектор \hat{m}) $\hat{m}_i = \frac{1}{c}\sum_{k=1}^c X_{(i)k}$, где $1 \leq i \leq m$.
 - 5. Порог отсечения k (первый порог) определяется из условия

$$k = \arg\min_{i} \left| h_0 - \hat{m}_i \right|,\,$$

где $1 \le i \le m$, а порог h_0 определяется по формуле $\alpha = \int_0^{h_0} f_{\text{III}}(x, \sigma_0^2) dx$, где α — заданный квантиль, f_{III} — плотность вероятности шума, ${\sigma_0}^2$ — дисперсия шума (известный параметр).

6. Вычисляется оценка

$$W = \sum_{i=k}^{m} X_{(j)} .$$
(4)

На выходе УПС-фильтра получаем последовательность отфильтрованных оценок W, задача обнаружения по которым решается «классическим» алгоритмом проверки двух гипотез.

УПС-фильтр работает по принципу скользящего окна, т.е. каждый новый вектор X_k с индексом c+1 вытесняет из матрицы $\mathbf{X}_{(i)k}$ вектор X_k с индексом 1.

Если результаты применения интегратора зависят от двух параметров (времени интегрирования τ и отношения сигнал/помеха q^2), то для УПС-фильтра результаты зависят, кроме того, еще от трех параметров (см.: [5]):

- соотношения величин n и m при условии nm = N = const,
- величины порога отсечения h_0 ,
- глубины c матрицы памяти $\mathbf{X}_{(i)k}$.

Применительно к задаче обнаружения УПС-фильтр заменяет в алгоритме обнаружения интегратор (сумматор).

3. Моделирование применения УПС-фильтра в задаче активной локации

Рассмотрим применение УПС-фильтра на примере обработки широкополосного хаотического 3C для двух вариантов посылки:

- обработка единичного импульса;
- обработка пачки импульсов.

Модель принимаего сигнала: смесь белого шума и широкополосного сигнала, сгенерированного из белого шума путем двойной спектральной обработки (аналогично [1]) в заданном частотном диапазоне и имеющего заданную длительность τ с последующим квадратичным детектированием этой смеси. Генерируется M импульсных посылок со скважностью $T_0 >> \tau$.

Обработка единичного импульса на интервале времени T_0 (например, с линии задержки) производится скользящим окном (интегратором) размерностью $\tau = N\Delta t$, где Δt — квантование по времени. То есть рассчитывается изменение энергии принимаемого сигнала за время T_0 и строится матрица $\mathbf{M}|N,L|$, где $L=T_0/\Delta t$. Матрица \mathbf{M} обрабатывается согласно проведенному выше алгоритму УПС-фильтра. «Глубина» (число столбцов) матрицы УПС-фильтра определяется временем интегрирования $c\Delta t = \tau_0 \leq \tau$, т.е. за время, меньшее или равное времени интегрирования.

Порядковые статистики расчета $X_{(i)}$ сохраняются в памяти и используются при обработке пачки. Обработка пачки импульсов производится независимо для каждого временного канала t_j , где $1 \le j \le L$. Вариационный ряд $\{X_I, ..., X_i, ..., X_m\}_j$, использовавшийся для расчета W во временном канале j, является вектор-столбцом матрицы УПС-фильтра, число векторов равно числу импульсов в пачке -M. Сформированная УПС-матрица размерностью |m,M| обрабатывается согласно алгоритму УПС-фильтра. Полученные по формуле (4) оценки W_i для всех импульсов пачки $(1 \le i \le M)$ накапливаются для получения оценки УПС всей пачки $W_j = \sum_{i=k}^M W_{ij}$, где $1 \le j \le L$. Таким образом, параллельно рассчитыва-

ются L УПС-фильтров, на выходе которых получаем оценки энергии в t_i временном канале.

Статистическая обработка результатов (для каждого импульса или каждого временного канала) проиводится согласно блок-схеме, приведенной на рис. 2 (Д – детектор).

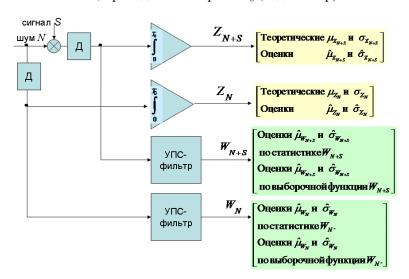


Рис. 2. Блок-схема сравнения статистик Z и W Fig. 2. Block diagram for comparison of Z and W statistics

Моделирование проводилось в среде MATLAB.

Параметры модели:

- квантование по времени $\Delta t = 1$;
- длина реализации (скважность следования импульсов) $L\Delta t = T_0 = 256$;
- разрешение по частоте $\Delta f = 1/T_0 = 1/256$;
- максимальная частота $f_{\text{max}} = N\Delta f/2 = L/(2T_0) = 1/(2\Delta t) = 1/2$;
- длительность посылки (импульса) $\tau \Delta t = 32;$
- начало посылки $\tau_{\rm H} = L/2 \tau/2 + 1$;
- разбиение посылки (согласно п. 1 алгоритма) m = 8, длительностью n = 4;
- база $B = \tau \Delta t (f_2 f_1) = \tau \Delta t \Delta F = 32(64/256 32/256) = 4;$
- число импульсов в пачке M = 10;
- статистическая обработка по 1 000 замерам.

Результаты статистического моделировапия *обработки единичного импульса* представлены на следующих рисунках.

На рис. 3 приведены результаты моделирования обработки единичного импульса:

- а) УПС-фильтром со скользящим окном $\mathbf{M}|m, \tau'| (\tau' \leq \tau)$ (статистика W) и интегратором (скользящим) за время интегрирования τ (статистика Z) энергетическое накопление на выходе интегратора и УПС-фильтра в зависимости от времени;
- б) УПС-фильтром со скользящим окном (матрицей) $\mathbf{M}|m,\tau'|$ (статистика W) и интегратором за время τ (статистика Z) вероятность обнаружения на выходе интегратора и УПС-фильтра.

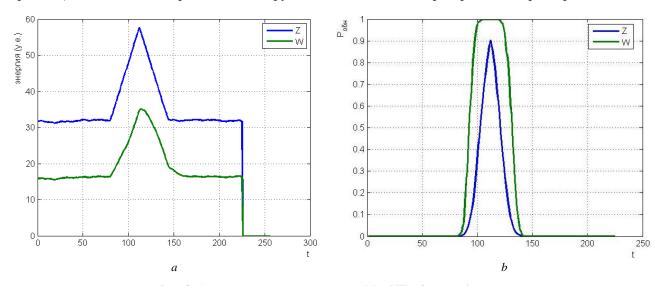


Рис. 3. Энергия на выходе интегратора (Z) и УПС-фильтра (W) – a; вероятность обнаружения на выходе интегратора (Z) и УПС-фильтра (W) – b Fig. 3. a) Energy at the output of the integrator (Z) and the TOS-filter (W). b) Probability of detection at the output of the integrator (Z) and TOS-filter (W)

На рис. 4 приведены кривые обнаружения $P_{\text{обн}}(q^2)$ для интегратора и УПС-фильтра (q^2 определяется по формуле (2)). Рассматриваются зависимости $P_{\text{обн}}$ от «глубины» матрицы памяти c ($\tau' = c\Delta t$) и от порога отсечения h_0 .

В работах [4, 5] показано, что когда время наблюдения сигнала достаточно велико, $P_{\text{обн}}$ сигнала увеличивается с увеличением «глубины» матрицы памяти c, но в случае импульсной посылки величина c ограничена длительностью посылки τ ($c\Delta t \leq \tau$). При этом необходимо учитывать, что при $c\Delta t = \tau$ скользящее окно сгладит максимум энергии импульса (см. рис. 3, a) и $P_{\text{обн}}$ по максимуму энергии уменьшится, как видно на рис. 4, a для c = 32. Уменьшение c (c = 4) также приводит к уменьшению $P_{\text{обн}}$. Оптимальной величиной c является $\tau/4 \leq c\Delta t \leq \tau/2$.

Оптимальной величиной порога отсечения h_0 является величина, близкая к медиане плотности вероятности шума ($h_0 = 8$), что видно из рис. 4, b и хорошо согласуется с теоретическим результатом из [4].

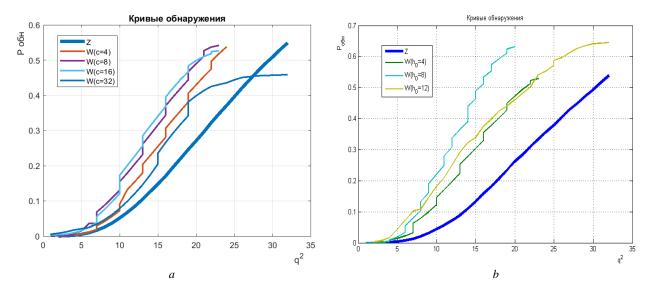


Рис. 4. Кривые обнаружения $P_{\text{обн}}(q^2)$ для интегратора (Z) и УПС-фильтра (W): a — зависимость от «глубины» матрицы памяти c; b — зависимость от порога отсечения h_0 Fig. 4. Detection curves Pbn (q^2) for the integrator (Z) and TOS-filter (W): a) dependence on the "depth" of the memory matrix c; b) dependence on the cutoff threshold h_0

При *обработке пачки импульсов* формируется трехмерная матрица $\mathbf{M}|N,L,M|$, причем описанная выше матрица $\mathbf{M}|N,L|$ является ее частью как результат обработки k-го импульса пачки. Обработка трехмерной матрицы $\mathbf{M}|N,L,M|$ может производиться двумя способами:

- -M двумерных матриц $\mathbf{M}|N,L|_k = \mathbf{M}|N,L,k|$, $1 \le k \le M$, обрабатываются как единичные импульсы, а результаты оценок энергии накапливаются по M импульсам;
- для фиксированного временного отсчета Δt_i , $1 \le i \le L$, выбирается двухмерная матрица $\mathbf{M}|N,M|_i = \mathbf{M}|N,i,M|$. При обработке пачки импульсов используется не скользящее окно (матрица) $\mathbf{M}|m,\tau'|$, а L матриц фиксированного размера, число векторов в которых определяется числом импульсов в пачке $\mathbf{M}|N,M|$.

На рис. 5 приведены кривые обнаружения $P_{\text{обн}}(q^2)$ для интегратора и УПС-фильтра пачки импульсов, когда УПС-фильтр обрабатывает пачку по первому способу $-P_{\text{обн1}}$ (график W_1), и когда УПС-фильтр обрабатывает пачку по второму способу $-P_{\text{обн2}}$ (график W_2).

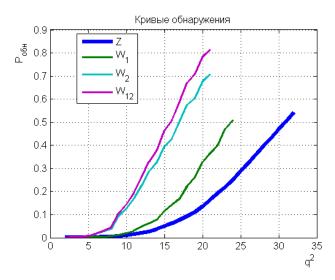


Рис. 5. Кривые обнаружения $P_{06H}(q^2)$ для интегратора и УПС-фильтра для пачки импульсов Fig. 5. Detection curves Pbn (q^2) for the integrator and TOS-filter for a pulse train

Так как оценки для W определяются по разным массивам данных: по первому способу по «строкам » матрицы \mathbf{M} :,L,M, а по второму — по «столбцам » матрицы \mathbf{M} :,L,M, можно считать

полученные оценки независимыми и для расчета вероятности правильного обнаружения пачки использовать формулу интегральной (кумулятивной) вероятности $P_{\text{обн}} = 1 - (1 - P_{\text{обн}1})(1 - P_{\text{обн}2})$ (график W_{12}).

Из приведенных кривых обнаружения видно, что второй способ (обработка по «столбцам») обеспечивает лучшую $P_{\text{обн}}$, чем первый способ (обработка по «строкам»). Это, видимо, объясняется тем, что если скользящее окно «сглаживает острые углы» исходного процесса Z (см. рис. 4), то при обработке пачки по «столбцам» сглаживания нет.

Заключение

Для систем АЛ разработан алгоритм, заменяющий интегратор (сумматор) в энергетическом приемнике системы АЛ на фильтр на основе усеченных порядковых статистик (УПС-фильтр), который позволяет увеличить $P_{\text{обн}}$ при фиксированной $P_{\text{лг}}$ по сравнению с ЭП.

Статистическое моделирование при сравнении ЭП и УПС-фильтра показывает, что при малых отношениях сигнал/помеха применение УПС-фильтра обеспечивает существенный выигрыш в $P_{\rm oбh}$ по сравнению с ЭП.

Список источников

- 1. Залогин Н.Н., Скнаря А.В. Зондирующие сигналы для активной локации высокого пространственного разрешения // PEHCИТ. 2016. Т. 8, № 1. С. 3–8: doi: 10.17725/rensit.2016.08.003
- 2. Бердышев В.П., Гарин Е.Н., Фомин А.Н. и др. Радиолокационные системы / общ. ред. В.П. Бердышева. Красноярск : Сиб. федер. ун-т, 2011.
- 3. Ван Трис Г. Теория обнаружения, оценок и модуляции : в 4 т. М. : Сов. радио, 1977. Т. 3.
- 4. Рудько И.М. Применение порядковых статистик в задачах обнаружения // Управление большими системами. 2012. Вып. 37. С. 63-83.
- 5. Рудько И.М. Исследование влияния параметров фильтра на основе усеченных порядковых статистик (УПС-фильтра) на его выходные характеристики // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2022. № 60, С. 42–51. doi: 10.17223/19988605/60/5
- 6. Залогин Н.Н., Калинин В.И., Скнаря А.В. Активная локация с использованием широкополосных хаотических сигналов // РЕНСИТ. 2011. Т. 3, № 1. С. 3−17.
- 7. Дэйвид Г. Порядковые статистики. М.: Наука, 1979.
- 8. Рудько И.М. Алгоритм обнаружения звукорядов в спектре шумоизлучения морских судов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2023. № 62. С. 76-84. doi: 10.17223/19988605/62/8
- 9. Рудько И.М. Обнаружение подвижного объекта с использованием порядковых статистик // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 48. С. 42–50. doi: 10.17223/19988605/48/5

References

- 1. Zalogin, N. & Sknarya, A. (2016) Zondiruyushchie signaly dlya aktivnoy lokatsii vysokogo prostranstvennogo razresheniya [Sounding signals for the active location of high spatial resolution]. *RENSIT*. 8(1). pp. 3–8.
- 2. Berdyshev, V.P., Garin, E.N., Fomin, A.N. et al. (2011) *Radiolokatsionnye sistemy* [Radar systems]. Krasnoyarsk: Siberian Federal University.
- 3. Van Trees, H. (1977) *Teoriya obnaruzheniya, otsenok i modulyatsii* [Theory of Detection, Estimation and Modulation]. Vol. 3. Moscow: Sovetskoe radio.
- 4. Rudko, I.M.(2012) Primenenie poryadkovykh statistik v zadachakh obnaruzheniya [Application of ordinary statistics in detection problems]. *Upravlenie bol'shimi sistemami*. 37. pp. 63–83.
- 5. Rudko, I.M. (2022) Investigating the effect of filter parameters based on truncated order statistics (TOS-filter) on its output characteristics. *Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika Tomsk State University Journal of Control and Computer Science*. 60. pp. 42–51. DOI: 10.17223/19988605/60/5
- 6. Zalogin, N., Kalinin, V. & Sknarya, A. (2011) Aktivnaya lokatsiya s ispol'zovaniem shirokopolosnykh khaoticheskikh signalov [The active location with the use of ultrawide-band chaotic signals]. *RENSIT*. 3(1). pp. 3–17.
- 7. David, H.A. (1979) Poryadkovye statistiki [Order Statistics]. Translated from English. Moscow: Nauka.
- 8. Rudko, I.M. (2023) Algorithm for detecting harmonic series in the noise emission spectrum of sea vessels. *Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika Tomsk State University Journal of Control and Computer Science*. 62. pp. 76–84. DOI: 10.17223/19988605/62/8

9. Rudko, I.M. (2019) Detection of moving object using order statistics. *Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika – Tomsk State University Journal of Control and Computer Science*. 48. pp. 42–50. DOI: 10.17223/19988605/48/5

Информация об авторе:

Рудько Игорь Михайлович — кандидат технических наук, старший научный сотрудник Института проблем управления им. В.А. Трапезникова Российской академии наук (Москва, Россия). E-mail: igor-rudko@mail.ru

Автор заявляет об отсутствии конфликта интересов.

Information about the author:

Rudko Igor M. (Candidate of Technical Sciences, Senior Researcher, V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation). E-mail: igor-rudko@mail.ru.

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Поступила в редакцию 19.02.2025; принята к публикации 02.06.2025

Received 19.02.2025; accepted for publication 02.06.2025