Nº 95

2025 Математика и механика

Tomsk State University Journal of Mathematics and Mechanics

Научная статья УДК 514.76 MSC: 53C15, 53C30, 53C25, 22E25

doi: 10.17223/19988621/95/4

О левоинвариантных полукэлеровых структурах на шестимерных нильпотентных несимплектических группах Ли

Николай Константинович Смоленцев¹, Карина Владиславовна Чернова²

^{1, 2} Кемеровский государственный университет, Кемерово, Россия

¹ smolennk@mail.ru

² karina.chernova.2002@mail.ru

Аннотация. Известно, что существует 34 класса шестимерных нильпотентных групп Ли, многие из которых допускают левоинвариантные симплектические и комплексные структуры. Среди них имеется три класса групп, на которых не существует левоинвариантных симплектических структур, но есть комплексные структуры. В данной работе на таких группах Ли естественным образом определены полукэлеровы и почти пара-полукэлеровы структуры и найдены их геометрические свойства. Ключевые слова: шестимерные нильпотентные алгебры Ли, левоинвариантные полукэлеровы структуры. почти пара-полукэлеровы структуры, паракомплексные структуры

Для цитирования: Смоленцев Н.К., Чернова К.В. О левоинвариантных полукэлеровых структурах на шестимерных нильпотентных несимплектических группах Ли // Вестник Томского государственного университета. Математика и механика. 2025. № 95. С. 38–51. doi: 10.17223/19988621/95/4

Original article

On left-invariant semi-Kähler structures on six-dimensional nilpotent nonsymplectic Lie groups

Nikolay K. Smolentsev¹, Karina V. Chernova²

^{1, 2} Kemerovo State University, Kemerovo, Russian Federation

¹ smolennk@mail.ru

² karina.chernova.2002@mail.ru

Abstract. It is known that there exist 34 classes of six-dimensional nilpotent Lie groups many of which admit left-invariant symplectic and complex structures. Among them, there are three classes of groups on which there are no left-invariant symplectic structures but there exist complex structures. The aim of the work is to determine new left-invariant geometric structures on these three six-dimensional Lie groups, compensating in a sense

for the absence of symplectic structures, as well as to study their geometric properties. We study Lie groups G_i that have the following Lie algebras with nonzero Lie brackets:

```
g_1: [e_1, e_2] = e_4, [e_2, e_3] = e_5, [e_1, e_4] = e_6, [e_3, e_5] = -e_6,
```

 g_2 : $[e_1, e_2] = e_4$, $[e_1, e_4] = e_5$, $[e_2, e_4] = e_6$,

 q_3 : $[e_1, e_2] = e_6, [e_3, e_4] = e_6.$

It is shown that on these Lie algebras there exist non-degenerate 2-forms ω for which the property $\omega \wedge d\omega = 0$ holds. Such forms ω are called semi-Kähler. For each group G_i , families of semi-Kähler 2-forms ω , compatible complex and para-complex structures, and corresponding pseudo-Riemannian metrics are obtained.

Keywords: six-dimensional nilpotent Lie algebras, left-invariant semi-Kähler structures. almost para-semi-Kähler structures, para-complex structures

For citation: Smolentsev, N.K., Chernova, K.V. (2025) On left-invariant semi-Kähler structures on six-dimensional nilpotent nonsymplectic Lie groups. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics*. 95. pp. 38–51. doi: 10.17223/19988621/95/4

Ввеление

В работе [1] показано, что 26 из 34 классов шестимерных нильпотентных групп Ли допускают левоинвариантные симплектические структуры. Из оставшихся восьми классов несимплектических групп Ли пять групп Ли не допускают также и комплексных структур и три несимплектических группы Ли допускают комплексные структуры [2]. Первые пять групп исследованы в работе Н.К. Смоленцева [3], геометрия последних трех несимплектических групп Ли в настоящее время изучена недостаточно. Цель работы — определение на указанных трех шестимерных группах Ли новых левоинвариантных геометрических структур, компенсирующих в некотором смысле отсутствие симплектических структур, а также исследование их геометрических свойств.

Вместо свойства симплектичности за основу взято свойство полукэлеровости [4] 2-формы ω : $\omega \wedge d\omega = 0$. Кроме того, исследуется свойство невырождености 3-формы $d\omega$ в смысле Хитчина [5].

В данной работе показано, что в случае одной из рассматриваемых групп Ли с каждой невырожденной 2-формой ω с невырожденным внешним дифференциалом $d\omega$ инвариантно связана паркомплексная структура. Для каждой группы найдены семейства полукэлеровых 2-форм ω , согласованных комплексных структур и соответствующих псевдоримановых метрик. Определены и исследованы свойства левоинвариантных 2-форм ω , имеющих невырожденный внешний дифференциал $d\omega$ в смысле Хитчина. Исследованы геометрические свойства параполукэлеровых и полукэлеровых структур на указанных группах Ли. Определены ассоциированные метрики и вычислены их свойства кривизны.

Напомним основные понятия, используемые в данной работе.

Пусть G — вещественная группа Ли размерности n и \mathbf{g} — ее алгебра Ли. Группа Ли называется нильпотентной, если ее алгебра Ли нильпотентна, т.е. является конечной следующая убывающая последовательность идеалов \mathbf{g}^k : $\mathbf{g}^0 = \mathbf{g}$, $\mathbf{g}^{k+1} = [\mathbf{g}, \mathbf{g}^k]$, определенная индуктивно.

Левоинвариантная симплектическая структура на группе Ли G — это левоинвариантная замкнутая невырожденная 2-форма ω . Она задается замкнутой 2-формой ω максимального ранга на алгебре Ли \mathbf{g} .

Левоинвариантная почти комплексная структура на группе Ли G – это левоинвариантное поле эндоморфизмов J: $TG \to TG$ касательного расслоения, обладающее свойством $J^2 = -Id$. Поскольку J определяется линейным оператором J на алгебре Ли $\mathbf{g} = T_e G$, то для простоты мы будем говорить, что J – это почти комплексная структура на алгебре Ли \mathbf{g} . Почти комплексная структура J определяет комплексную структуру на группе Ли G в случае, когда обращается в нуль тензор Нейенхейса:

$$N_J(X, Y) = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY] = 0$$
, для любых $X, Y \in \mathbf{g}$.

Левоинвариантная (псевдо)кэлерова структура на группе Ли G – это тройка (ω, J, g) состоящая из левоинвариантной симплектической формы ω , левоинвариантной комплексной структуры J, согласованной с формой ω , $\omega(JX, JY) = \omega(X, Y)$, и (псевдо)римановой метрики g, определенной формулой $g(X, Y) = \omega(X, JY)$.

Определим возрастающую последовательность J-инвариантных идеалов: $\mathbf{a}_0(J)=0,$

$$\mathbf{a}_s(J) = \{X \in \mathbf{g} \mid [X, \mathbf{g}] \subset \mathbf{a}_{s-1}(J) \text{ } \mathsf{H} [JX, \mathbf{g}] \subset \mathbf{a}_{s-1}(J)\}, s \geq 1.$$

В частности, идеал $\mathbf{a}_1(J)$ лежит в центре и имеет размерность не менее двух.

Определение. Левоинвариантная почти комплексная структура J на группе $\mathit{Ли}\ G$ называется нильпотентной, если для ряда идеалов $\mathbf{a}_s(J)$, определенных выше, существует номер p такой, что $\mathbf{a}_p(J) = \mathbf{g}$.

В работе [6] показано, что псевдокэлеровы структуры на шестимерных нильпотентных группах Ли имеют нильпотентные комплексные структуры.

Почти паракомплексной структурой на 2n-мерном многообразии M называется поле P эндоморфизмов касательного расслоения TM таких, что $P^2=Id$, причем ранги собственных распределений $T^{\pm}M:=\ker(Id\mp P)$ равны. Почти паракомплексная структура P называется интегрируемой, если распределения $T^{\pm}M$ инволютивны. В этом случае P называется паракомплексной структурой. В случае левоинвариантой паракомплексной структуры P на группе Ли G инвариантные подпространства $T_e^{\pm}G$ являются подалгебрами. Обзор теории паракомплексных структур представлен в работе [7].

Левоинвариантная паракэлерова структура на группе Ли G – это тройка (ω, P, g) , состоящая из левоинвариантной симплектической формы ω , левоинвариантной паракомплексной структуры P, согласованной с формой ω , $\omega(PX, PY) = -\omega(X, Y)$, и (псевдо)римановой метрики g, определенной формулой $g(X, Y) = \omega(X, PY)$.

Отметим, что термин «паракэлерово» многообразие употребляется также в другом смысле. А именно, почти эрмитовы многообразия, удовлетворяющие тождеству Кэлера g(R(X,Y)Z,W)=g(R(X,Y)JZ,JW), где R – тензор кривизны, и J – почти комплексная структура, согласованная с римановой метрикой g, также называются паракэлеровыми многообразиями. В данной работе паракэлеровы многообразия рассматриваются с точки зрения паракомплексной геометрии, которая была введена П. Либерманом в 1952 г. по аналогии с комплексной геометрией. Отметим для сравнения, что такие паракэлеровы многообразия удовлетворяют следующему тождеству: g(R(X,Y)Z,W) = -g(R(X,Y)PZ,PW), где P – тензор почти паракомплексной структуры, согласованный с псевдоримановой метрикой g.

Для рассматриваемых несимплектических групп Ли условие замкнутости 2-формы ω приводит к ее вырожденности. Можно ослабить требование замкнутости формы ω . Известно, что в случае левоинвариантной почти эрмитовой структуры

на группе Ли размерности 2n свойство $d(\omega^{n-1})=0$ фундаментальной формы ω определяет класс полукэлеровых многообразий по классификации Грея—Харвеллы [4]. В нашем шестимерном случае это условие полукэлеровости принимает вид: $\omega \wedge d\omega = 0$.

Если невырожденная 2-форма ω незамкнута, то можно рассматривать 3-форму $d\omega$. В работе [5] Хитчин определил понятие невырожденности (стабильности) для 3-форм Ω и построил линейный оператор K_{Ω} , квадрат которого пропорционален тождественному оператору Id. Напомним конструкцию Хитчина.

Пусть V-6-мерное вещественное векторное пространство, и μ – форма объема на V. Пусть $\Omega \in \Lambda^3 V^*$ и $X \in V$, тогда $\iota_X \Omega \in \Lambda^2 V^*$ и $\iota_X \Omega \wedge \Omega \in \Lambda^5 V^*$. Естественное спаривание внешним произведением $V^* \bigotimes \Lambda^5 V^* \to \Lambda^6 V^* \cong \mathbf{R} \mu$ определяет изоморфизм $A \colon \Lambda^5 V^* \cong V$. Используя это, Хитчин определил линейное преобразование $K_{\Omega} \colon V \to V$ следующей формулой:

$$K_{\Omega}(X) = A(\iota_X \Omega \wedge \Omega).$$

Другими словами, $\iota_{K\Omega(X)}\mu = \iota_X\Omega \wedge \Omega$. Оператор K_Ω обладает свойствами trace(K_Ω) = 0 и $K_\Omega^2 = \lambda(\Omega)I$. Поэтому в случае $\lambda(\Omega) < 0$ получается структура J_Ω комплексного векторного пространства на пространстве V:

$$J_{\Omega} = \frac{1}{\sqrt{-\lambda(\Omega)}} K_{\Omega},$$

а если $\lambda(\Omega) > 0$, то получаем паракомплексную структуру P_{Ω} , т.е., $P_{\Omega}^2 = Id$, $P_{\Omega} \neq 1$ по аналогичной формуле:

$$P_{\Omega} = \frac{1}{\sqrt{\lambda(\Omega)}} K_{\Omega}.$$

Таким образом, оператор $K_{d\omega}$ может определять либо почти комплексную, либо почти паракомплексную структуру на группе Ли, когда $d\omega$ является невырожденной.

Пусть ∇ – связность Леви-Чивиты, соответствующая (псевдо)римановой метрике g. Она определяется из шестичленной формулы, которая для левоинвариантных векторных полей X, Y, Z на группе Ли принимает вид:

$$2g(\nabla_X Y, Z) = g([X, Y], Z) + g([Z, X], Y) + g(X, [Z, Y]).$$

Тензор кривизны определяется формулой $R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}$. Тензор Риччи Ric(X, Y) находится как свертка тензора кривизны по первому и по четвертому (верхнему) индексам. Оператор Риччи определяется формулой Ric(X, Y) = g(RIC(X), Y). Для вычислений геометрических характеристик левоинвариантных структур на группах Ли использовалась система Maple.

Несимплектические группы Ли

В данной работе изучаются нильпотентные группы Ли G_i , которые не допускают левоинвариантных симплектических структур, но могут иметь комплексные структуры. В соответствии с классификацией [2] они имеют алгебры Ли со следующими ненулевыми скобками Ли базисных векторов $e_k \in \mathbf{g}_i$:

$$g_1$$
: $[e_1, e_2] = e_4$, $[e_2, e_3] = e_5$, $[e_1, e_4] = e_6$, $[e_3, e_5] = -e_6$.

$$g_2$$
: $[e_1, e_2] = e_4$, $[e_1, e_4] = e_5$, $[e_2, e_4] = e_6$.

$$g_3$$
: $[e_1, e_2] = e_6$, $[e_3, e_4] = e_6$.

1. Группа Ли G_1 . Рассмотрим первую группу Ли, которая не допускает левоинвариантных симплектических структур, но имеет комплексные. Комплексные структуры на этой группе Ли были исследованы в работе Магнина [8]. Мы будем использовать следующие коммутационные соотношения алгебры Ли \mathbf{g}_1 , соответствующие работе [8] (которые получаются заменой: $e_2 \leftrightarrow e_3$, $e_5 = -e_5$):

$$[e_1, e_3] = e_4, [e_1, e_4] = e_6, [e_2, e_3] = e_5, [e_2, e_5] = e_6.$$

Полу-паракэлеровы структуры. Пусть $\omega = w_{ij}e^i \wedge e^j$ — произвольная 2-форма в дуальном базисе $\{e^i\}$. Рассмотрим вопрос о паракэлеровости и невырожденности в смысле Хитчина ее внешнего дифференциала $d\omega$ и исследуем паракомплексные структуры, соответствующие невырожденным $d\omega$. Свойство $\omega \wedge d\omega = 0$ выполняется при следующих условиях:

$$-w_{24}w_{56} + w_{25}w_{46} - w_{26}w_{45} = 0, \quad -w_{14}w_{56} + w_{15}w_{46} - w_{16}w_{45} = 0,$$

$$w_{13}w_{46} - w_{14}w_{36} + w_{16}w_{34} + w_{23}w_{56} - w_{25}w_{36} + w_{26}w_{35} = 0.$$

Существует два решения ω_1 и ω_2 этой системы уравнений, когда 3-форма $d\omega$ является невырожденной:

$$\begin{split} \omega_{1} &= e^{1} \wedge \left(w_{12}e^{2} + w_{13}e^{3} + \frac{w_{15}w_{46} - w_{16}w_{45}}{w_{56}} e^{4} + w_{15}e^{5} + w_{16}e^{6} \right) + \\ &+ e^{2} \wedge \left(\Omega_{23}e^{3} + \frac{w_{25}w_{46} - w_{26}w_{45}}{w_{56}} e^{4} + w_{25}e^{5} + w_{26}e^{6} \right) + \\ &+ e^{3} \wedge \left(w_{34}e^{4} + w_{35}e^{5} + w_{36}e^{6} \right) + e^{4} \wedge \left(w_{45}e^{5} + w_{46}e^{6} \right) + w_{56}e^{5} \wedge e^{6}, \end{split}$$

где

$$\Omega_{23} = -\frac{w_{13}w_{46}w_{56} - w_{15}w_{36}w_{46} + w_{16}w_{34}w_{56} + w_{16}w_{36}w_{45} - w_{25}w_{36}w_{56} + w_{26}w_{35}w_{56}}{w_{56}^2},$$

И

$$\begin{split} \omega_2 &= e^1 \wedge \left(w_{12} e^2 + \Omega_{13} e^3 + w_{14} e^4 + \frac{w_{16} w_{45}}{w_{46}} e^5 + w_{16} e^6 \right) + \\ &+ e^2 \wedge \left(w_{23} e^3 + w_{24} e^4 + \frac{w_{26} w_{45}}{w_{46}} e^5 + w_{26} e^6 \right) + \\ &+ e^3 \wedge \left(w_{34} e^4 + w_{35} e^5 + w_{36} e^6 \right) + e^4 \wedge \left(w_{45} e^5 + w_{46} e^6 \right), \end{split}$$

где

$$\Omega_{13} = \frac{w_{14}w_{36}w_{46} - w_{16}w_{34}w_{46} - w_{26}w_{35}w_{46} + w_{26}w_{36}w_{45}}{w_{46}^2}$$

Представим подробнее второе решение. Вычисления показывают, что для данной 2-формы ω_2 внешний дифференциал $d\omega_2$ является невырожденным в смысле Хитчина [5]. При этом $\lambda(d\omega)=w_{46}{}^4>0$. Поэтому 3-форма $d\omega_2$ определяет почти паракомплексную структуру $P_{d\omega_2}$ на вещественном векторном пространстве \mathbf{g}_1 следующим образом:

$$P_{d\omega_2} = \frac{1}{\sqrt{\lambda(d\omega)}} K_{d\omega_2} .$$

Матричное выражение $P_{d\omega_2}$:

$$P_{d\omega_{2}} = \frac{1}{w_{46}^{2}} \begin{bmatrix} w_{46}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -w_{46}^{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w_{46}^{2} & 0 & 0 & 0 & 0 \\ -2w_{16}w_{46} & 0 & -2w_{36}w_{46} & -w_{46}^{2} & 0 & 0 \\ -2w_{26}w_{46} & 0 & -2w_{45}w_{46} & 0 & -w_{46}^{2} & 0 \\ 2w_{16}w_{36} + 2w_{26}w_{45} & -2w_{24}w_{46} + 2w_{26}w_{36} & 2w_{36}^{2} + 2w_{45}^{2} & 2w_{36}w_{46} & 2w_{45}w_{46} & w_{46}^{2} \end{bmatrix}.$$
 (1)

Почти паракомплексная структура $P_{d\omega_2}$ не является интегрируемой, тензор Нейенхейса не обращается в нуль.

Для оператора почти паракомплексной структуры $P_{d\omega_2}$ выполняется свойство согласованности с формой ω_2 :

$$\omega_2(P_{d\omega_2}X, P_{d\omega_2}Y) = -\omega_2(X, Y).$$

Определим ассоциированную метрику $g_{d\omega_2}(X,Y)=\omega_2(X,P_{d\omega_2}Y)$. Мы получаем семейство полу-паракэлеровых структур $(\omega_2,P_{d\omega_2},g_{d\omega_2})$, зависящее от 11 параметров w_{ij} . Вычисления показывают, что ассоциированная метрика $g_{d\omega_2}$ имеет ненулевую скалярную кривизну:

$$S(\omega_2) = -\frac{w_{46}^2}{(w_{35}w_{46} - w_{36}w_{45})(w_{12}w_{46} - w_{14}w_{26} + w_{16}w_{24})}.$$

При вычислении геометрических характеристик псевдоримановой метрики $g_{d\omega_2}$ получаются очень сложные выражения. Поэтому рассмотрим частный случай обращения в нуль ряда параметров w_{ij} . Во-первых, заметим, что тензор $P_{d\omega_2}$ и скалярная кривизна $R(\omega_2)$ не зависят от параметров w_{23} и w_{34} . Будем считать их нулевыми. Кроме того, из требования равенства нулю максимального числа компонент тензора Нейенхейса получаем: $w_{46} \neq 0$, $w_{26} = 0$, $w_{36} = 0$, $w_{45} = 0$. В этом случае имеем более простое выражение для ω_2 и $P_{d\omega_3}$:

$$\omega_2 = \begin{bmatrix} 0 & w_{12} & 0 & w_{14} & 0 & w_{16} \\ -w_{12} & 0 & 0 & w_{24} & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{35} & 0 \\ -w_{14} & -w_{24} & 0 & 0 & 0 & w_{46} \\ 0 & 0 & -w_{35} & 0 & 0 & 0 \\ -w_{16} & 0 & 0 & -w_{46} & 0 & 0 \end{bmatrix}, \ P_{d\omega_2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\frac{2w_{16}}{w_{46}} & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & -\frac{2w_{24}}{w_{46}} & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Тогда метрический тензор $g_{d\omega_2}$ имеет следующий тензор Риччи и скалярную кривизну:

$$Ric = \frac{w_{46}^2}{2w_{35}(w_{12}w_{46} + w_{16}w_{24})} \begin{bmatrix} -\frac{2w_{14}w_{16}}{w_{46}} & w_{12} & 0 & -w_{14} & 0 & w_{16} \\ w_{12} & 0 & 0 & -w_{24} & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{35} & 0 \\ -w_{14} & -w_{24} & 0 & 0 & 0 & w_{46} \\ 0 & 0 & w_{35} & 0 & 0 & 0 \\ w_{16} & 0 & 0 & w_{46} & 0 & 0 \end{bmatrix},$$

$$S = \frac{w_{46}^2}{w_{35}(w_{12}w_{46} + w_{16}w_{24})}.$$

Полукэлеровы структуры. В этом разделе рассмотрим комплексную структуру на **g**₁, найденную в работе Магнина [8]:

где $\xi_{36} = \pm 1$. Остальные комплексные структуры на \mathbf{g}_1 получаются действием группы автоморфизмов. Возьмем для определенности $\xi_{36} = 1$.

Рассмотрим 2-формы $\omega = w_{ij}e^i \wedge e^j$, согласованные с оператором J, $\omega(JX, JY) = \omega(X, Y)$ и обладающие свойством полукэлеровости $\omega \wedge d\omega = 0$. Существует четыре типа таких 2-форм:

$$\begin{split} \omega_1 &= e^1 \wedge \left(w_{12} e^2 + w_{13} e^3 - \frac{w_{13} w_{45}}{w_{34}} e^5 + \frac{w_{13} w_{35}}{w_{34}} e^6 \right) + e^2 \wedge \left(\frac{w_{13} w_{35}}{w_{34}} e^3 + \frac{w_{13} w_{45}}{w_{34}} e^4 - w_{13} e^6 \right) + e^4 \wedge \left(w_{45} e^5 - w_{35} e^6 \right) + w_{34} e^5 \wedge e^6 \,, \\ \omega_2 &= e^1 \wedge \left(w_{12} e^2 - \frac{w_{23} w_{45}}{w_{35}} e^5 + w_{23} e^6 \right) + e^2 \wedge \left(w_{23} e^3 + \frac{w_{23} w_{45}}{w_{35}} e^4 \right) + \\ &\quad + e^3 \wedge \left(w_{35} e^5 + w_{36} e^6 \right) + e^4 \wedge \left(w_{45} e^5 - w_{35} e^6 \right) , \\ \omega_3 &= e^1 \wedge \left(w_{12} e^2 - \frac{w_{15} w_{34}}{w_{45}} e^3 + w_{15} e^5 \right) + e^2 \wedge \left(-w_{15} e^4 + \frac{w_{15} w_{34}}{w_{45}} e^6 \right) + \\ &\quad + e^3 \wedge \left(w_{34} e^4 + w_{36} e^6 \right) + w_{45} e^4 \wedge e^5 + w_{34} e^5 \wedge e^6 \,, \\ \omega_4 &= e^1 \wedge \left(w_{12} e^2 + w_{13} e^3 \right) - w_{13} e^2 \wedge e^6 + e^3 \wedge \left(w_{34} e^4 + w_{36} e^6 \right) + w_{34} e^5 \wedge e^6 \,, \end{split}$$

В результате получаем четыре семейства полукэлеровых структур $(J,\omega_k,g_{\omega_k})$, где $g_{\omega_k}(X,Y)=\omega_k(X,JY)$. Для каждого из них легко вычисляются геометрические характеристики ассоциированной метрики g_{ω_k} .

Рассмотрим более подробно последнее решение ω_4 . Ассоциированная псевдориманова метрика $g_{\omega_4}(X,Y) = \omega_4(X,JY)$ имеет следующий тензор Риччи:

$$Ric = \frac{1}{2w_{34}^2w_{12}}\begin{bmatrix} Ric_{11} & -w_{34}^2w_{12} & 0 & -3w_{13}w_{36}w_{34} & 0 & -2w_{36}^2w_{13} \\ -w_{34}^2w_{12} & Ric_{22} & 0 & 0 & -w_{13}w_{36}w_{34} & 0 \\ 0 & 0 & 0 & 0 & 0 & -w_{13}w_{36}w_{34} & 0 \\ -3w_{13}w_{36}w_{34} & 0 & 0 & 3w_{36}w_{34}^2 & 0 & 2w_{36}^2w_{34} \\ 0 & -w_{13}w_{36}w_{34} & 0 & 0 & w_{36}w_{34}^2 & 0 \\ -2w_{36}^2w_{13} & 0 & -w_{36}w_{34}^2 & 2w_{26}^2w_{34} & 0 & 2w_{36}^3 \end{bmatrix},$$

где $Ric_{11} = w_{36}(w_{12}w_{36} + 3w_{13}^2)$, $Ric_{22} = (w_{12}w_{36} + w_{13}^2)w_{36}$, и скалярную кривизну $S = \frac{w_{36}^2}{w_{24}^2w_{12}}$.

Полученные результаты для группы G_1 сформулируем в следующем виде.

Теорема 1. Группа G_1 , не допускающая левоинвариантных симплектических структур, имеет многопараметрические семейства левоинвариантных полук-элеровых 2-форм ω с невырожденным дифференциалом $d\omega$. 3-форме $d\omega$ инвариантно соответствует почти паракэлерова структура (1), которая вместе c ω образует полу-паракэлерову структуру $(\omega, P_{d\omega}, g_{\omega})$, где $g_{\omega}(X, Y) = \omega(X, P_{d\omega}Y)$. Группа G_1 имеет также четыре многопараметрические семейства полу-кэлеровых структур (ω, J, g) , где J — комплексная структура (2) и $g(X, Y) = \omega(X, JY)$.

2. Группа Ли G_2 . Это вторая особая группа, которая не допускает симплектических структур. Алгебра Ли определяется следующими коммутационными соотношениями: $[e_1, e_2] = e_4$, $[e_1, e_4] = e_5$, $[e_2, e_4] = e_6$. Эта алгебра Ли разложимая: $\mathbf{g}_2 = \mathbf{h} \oplus \mathbf{R} e_3$, где \mathbf{h} — подалгебра, порожденная векторами e_1 , e_2 , e_4 , e_5 , e_6 . Имеет смысл переобозначить векторы базиса так, чтобы \mathbf{h} была образована первыми векторами:

$$e_1 \mapsto e_1, e_2 \mapsto e_2, e_4 \mapsto e_3, e_5 \mapsto e_4, e_6 \mapsto e_5, e_3 \mapsto e_6.$$

Тогда коммутационные соотношения будут выглядеть так:

$$[e_1, e_2] = e_3, [e_1, e_3] = e_4, [e_2, e_3] = e_5.$$

Центр алгебры Ли: $Z = \mathbf{R}\{e_4, e_5, e_6\}$. Алгебра Ли \mathbf{g}_2 является полупрямым произведением трехмерной алгебры Гейзенберга \mathbf{h}_3 и коммутативной подалгебры \mathbf{R}^3 :

$$\mathbf{g}_2 = \mathbf{h}_3 \bowtie \mathbf{R}^3 = \mathbf{R}\{e_1, e_3, e_4\} \bowtie \mathbf{R}\{e_2, e_5, e_6\}.$$

Поэтому на \mathbf{g}_2 существует интегрируемая паракомплексная структура

$$P = diag\{+1, -1, +1, +1, -1, -1\}.$$

Выбор невырожденной полукэлеровой 2-формы \omega. Для общей формы $\omega = w_{ij} \ e^i \wedge e^j$ квадрат оператора Хитчина формы $d\omega$ равен нулю при всех значениях параметров. Свойство полукэлеровости $\omega \wedge d\omega = 0$ выполняется при следующих условиях:

$$-w_{14}w_{56} + w_{15}w_{46} - w_{16}w_{45} = 0, -w_{24}w_{56} + w_{25}w_{46} - w_{26}w_{45} = 0, -w_{34}w_{56} + w_{35}w_{46} - w_{36}w_{45} = 0.$$

Существует только одно решение этой системы уравнений для невырожденной 2-формы ω . Тогда форма ω имеет вид:

$$\omega = e^{1} \wedge (w_{12} e^{2} + w_{13} e^{3} + w_{14} e^{4} + w_{15} e^{5} + w_{16} e^{6}) + e^{2} \wedge (w_{23} e^{3} + w_{24} e^{4} + w_{25} e^{5} + w_{26} e^{6}) + e^{3} \wedge (w_{34} e^{4} + w_{35} e^{5} + w_{36} e^{6}).$$
(3)

Напомним, что на \mathbf{g}_2 существует естественная паракомплексная структура $P = \operatorname{diag}\{+1, -1, +1, +1, -1, -1\}$. Условие согласованности $\omega(PX, PY) = -\omega(X, Y)$ формы ω и P выполняется при следующих значениях параметров:

$$w_{13} = 0$$
, $w_{14} = 0$, $w_{25} = 0$, $w_{26} = 0$, $w_{34} = 0$.

Тогда полукэлерова форма ω принимает вид:

$$\omega = e^{1} \Lambda (w_{12} e^{2} + w_{15} e^{5} + w_{16} e^{6}) + e^{2} \Lambda (w_{23} e^{3} + w_{24} e^{4}) + e^{3} \Lambda (w_{35} e^{5} + w_{36} e^{6}).$$
 (4)

В этом случае можно определить ассоциированную метрику $g(X, Y) = \omega(X, PY)$. В результате получается полу-паракэлерова структура (ω, P, g) с Риччи-плоской псевдоримановой метрикой g.

Выбор согласованной комплексной структуры. Практически невозможно найти комплексную структуру, согласованную с общей полукэлеровой 2-формой (3) и даже с (4). Поэтому выберем из семейства 2-форм (4) невырожденную и наиболее близкую к замкнутой форме. Мы видим, что такая форма обращается в нуль на центре $Z = \mathbf{R}\{e_4, e_5, e_6\}$ алгебры Ли. В нашем случае мы имеем

$$de^1 = 0$$
, $de^2 = 0$, $de^6 = 0$, $de^3 = -e^1 \wedge e^2$, $de^4 = -e^1 \wedge e^3$, $de^5 = -e^2 \wedge e^3$.

Из этих равенств легко видеть, что слагаемые $w_{12}e^1 \wedge e^2$, $w_{13}e^1 \wedge e^3$, $w_{23}e^2 \wedge e^3$, $w_{16}e^1 \wedge e^6$ не влияют на выражение внешнего дифференциала $d\omega$. Поэтому будем считать нулевыми w_{12} , w_{13} , w_{23} и w_{16} . Тогда форма ω принимает вид:

$$\omega = w_{15} e^1 \wedge e^5 + w_{24} e^2 \wedge e^4 + e^3 \wedge (w_{35} e^5 + w_{36} e^6).$$

Такая форма является невырожденной при $w_{15}w_{24}w_{36} \neq 0$. Это условие не содержит w_{35} . Поэтому будем также считать, что $w_{35} = 0$. Получаем следующую невырожденную полукэлерову 2-форму:

$$\omega = w_{15} e^1 \wedge e^5 + w_{24} e^2 \wedge e^4 + w_{36} e^3 \wedge e^6.$$

Перенормировкой векторов базиса алгебры Ли эту форму можно привести к виду:

$$\omega = e^1 \wedge e^5 - e^2 \wedge e^4 - e^3 \wedge e^6. \tag{5}$$

Теперь будем искать нильпотентную комплексную структуру $J = (\psi_{ij})$, согласованную с полученной полукэлеровой формой (5).

Условие согласованности $\omega(X, JY) + \omega(JX, Y) = 0$ выполняется при следующих условиях на параметры:

$$\psi_{52} = -\psi_{41}, \ \psi_{61} = -\psi_{53}, \ \psi_{54} = \psi_{21}, \ \psi_{55} = -\psi_{11}, \ \psi_{56} = \psi_{31}, \ \psi_{62} = \psi_{43}, \ \psi_{44} = -\psi_{22}, \ \psi_{45} = \psi_{12}, \ \psi_{46} = -\psi_{32}, \ \psi_{64} = -\psi_{23}, \ \psi_{65} = \psi_{13}, \ \psi_{66} = -\psi_{33}, \ \psi_{25} = -\psi_{14}, \ \psi_{26} = \psi_{34}, \ \psi_{16} = -\psi_{35}.$$

$$\psi_{46} = -\psi_{32}, \psi_{64} = -\psi_{23}, \psi_{65} = \psi_{13}, \psi_{66} = -\psi_{33}, \psi_{25} = -\psi_{14}, \psi_{26} = \psi_{34}, \psi_{16} = -\psi_{35}.$$

Рассмотрим возрастающую последовательность
$$J$$
-инвариантных идеалов: $\mathbf{a}_0(J) = 0$, $\mathbf{a}_s(J) = \{X \in \mathbf{g} \mid [X, \mathbf{g}] \subset \mathbf{a}_{s-1}(J) \text{ и } [JX, \mathbf{g}] \subset \mathbf{a}_{s-1}(J)\}, s \ge 1$.

В частности, идеал $\mathbf{a}_1(J)$ лежит в центре и имеет размерность не менее двух. В нашем случае мы имеем $\mathbf{a}_1(J) \subset Z = \mathbf{R}\{e_4, e_5, e_6\}$ размерности 2. Из коммутационных соотношений $[e_1, e_2] = e_3$, $[e_1, e_3] = e_4$, $[e_2, e_3] = e_5$ следует, что $\mathbf{a}_2(J) = \mathbf{R}\{e_3, e_4, e_5, e_6\}$ и $\mathbf{a}_3(J) = \mathbf{g}_2$. С учетом свойства согласованности получаем следующий вид матрицы нильпотентной почти комплексной структуры J:

$$J = \begin{bmatrix} \psi_{11} & \psi_{12} & 0 & 0 & 0 & 0 \\ \psi_{21} & \psi_{22} & 0 & 0 & 0 & 0 \\ \psi_{31} & \psi_{32} & \psi_{33} & 0 & 0 & \psi_{36} \\ \psi_{41} & \psi_{42} & \psi_{43} & -\psi_{22} & \psi_{12} & -\psi_{32} \\ \psi_{51} & -\psi_{41} & \psi_{53} & \psi_{21} & -\psi_{11} & \psi_{31} \\ -\psi_{53} & \psi_{43} & \psi_{63} & 0 & 0 & -\psi_{33} \end{bmatrix}$$

при значениях параметров

$$\psi_{13} = 0$$
, $\psi_{14} = 0$, $\psi_{15} = 0$, $\psi_{35} = 0$, $\psi_{23} = 0$, $\psi_{24} = 0$, $\psi_{34} = 0$.

Решаем две системы уравнений: $J^2 = -Id$ и $N_J = 0$. В результате получаем следующую левоинвариантную комплексную структуру:

$$J = \begin{bmatrix} \psi_{11} & \psi_{12} & 0 & 0 & 0 & 0 \\ -\frac{\psi_{11}^{2} + 1}{\psi_{12}} & -\psi_{11} & 0 & 0 & 0 & 0 \\ J_{1}^{3} & \psi_{32} & \psi_{33} & 0 & 0 & -\frac{w_{33}^{2} + 1}{\psi_{63}} \\ \psi_{41} & \psi_{42} & \psi_{43} & \psi_{11} & \psi_{12} & -\psi_{32} \\ J_{1}^{5} & -\psi_{41} & J_{3}^{5} & -\frac{\psi_{11}^{2} + 1}{\psi_{12}} & -\psi_{11} & J_{6}^{5} \\ J_{1}^{6} & \psi_{43} & \psi_{63} & 0 & 0 & -\psi_{33} \end{bmatrix},$$
 (6)

где $J_n{}^k-$ рациональные функции параметров ψ_{ij} :

$$\begin{split} J_1^3 &= J_6^5 = \frac{\psi_{11}\psi_{32}\psi_{63} - \psi_{32}\psi_{33}\psi_{63} + \psi_{33}^2\psi_{43} + \psi_{43}}{\psi_{12}\psi_{63}}, \\ J_1^5 &= \frac{\psi_{11}^2\psi_{42}\psi_{63} - 2\psi_{11}\psi_{12}\psi_{41}\psi_{63} - \psi_{32}^2\psi_{63}^2 + 2\psi_{32}\psi_{33}\psi_{43}\psi_{63} - \psi_{33}^2\psi_{43}^2 + \psi_{42}\psi_{63} - \psi_{43}^2}{\psi_{12}^2\psi_{63}}, \\ J_1^6 &= -J_3^5 = \frac{\psi_{11}\psi_{43} - \psi_{32}\psi_{63} + \psi_{33}\psi_{43}}{\psi_{12}}. \end{split}$$

Пусть $g_J(X, Y) = \omega(X, JY)$ – ассоциированная метрика. Получаем семейство полукэлеровых структур (ω , J, g_J) с Риччи-плоской псевдоримановой метрикой g_J .

Теорема 2. Группа G_2 , не допускающая левоинвариантных симплектических структур, допускает многопараметрическое семейство левоинвариантных полупаракэлеровых структур (ω, P, g) с интегрируемой паракомплексной структурой $P = \operatorname{diag}\{+1,-1,+1,+1,-1,-1\}$ и псевдоримановой Pиччи-плоской метрикой $g(X,Y) = \omega(X,PY)$. Группа G_2 допускает также многопараметрическое семейство полукэлеровых структур (ω,J,g_J) с фундаментальной формой (5), нильпотентной комплексной структурой (6) и ассоциированной псевдоримановой Pиччи-плоской метрикой g_J .

3. Группа Ли G_3 . Это третья особая группа, которая не допускает симплектических структур, но имеет комплексные. Коммутационные соотношения алгебры Ли g_3 по классификации [2]: $[e_1, e_2] = e_6$, $[e_3, e_4] = e_6$. Переобозначим e_6 на e_5 , тогда $[e_1, e_2] = e_5$, $[e_3, e_4] = e_5$.

Алгебра Ли разложимая: $\mathbf{g}_3 = \mathbf{h} \oplus \mathbf{R} e_6$. Здесь алгебра \mathbf{h} — это центральное расширение \mathbf{R}^4 со стандартной симплектической формой $\omega = e^1 \wedge e^2 + e^3 \wedge e^4$ и $\mathbf{R} e_5$.

Напомним, что если имеется симплектическая алгебра Ли (\mathbf{n}, ω) , то центральное расширение $\mathbf{h} = \mathbf{n} \times_{\omega} \mathbf{R}$ есть алгебра Ли, в которой скобки Ли задаются следующим образом:

$$[X, \xi]_h = 0, [X, Y]_h = [X, Y]_n + \omega(X, Y)\xi$$

для любых $X, Y \in \mathbf{n}$, где $\xi = d/dt -$ единичный вектор из \mathbf{R} .

В нашем случае $\mathbf{h} = \mathbf{R}^4 \times {}_{\omega}\mathbf{R}e_5$, $\omega = e^1 \wedge e^2 + e^3 \wedge e^4$ и $\xi = e_5$. Поскольку форма ω невырожденная, то \mathbf{h} является контактной алгеброй Ли [9] с контактной формой $\mathbf{h} = e^5$ и полем Риба $\xi = e_5$. Определим аффинор \mathbf{h} следующим естественным образом:

$$\varphi(e_1) = e_2, \ \varphi(e_2) = -e_1, \ \varphi(e_3) = e_4, \ \varphi(e_4) = -e_3, \ \varphi(e_5) = 0.$$

Ассоциированная метрика для контактной структуры η полностью определяется аффинором ф по формуле:

$$g(X, Y) = d\eta(\varphi X, Y) + \eta(X)\eta(Y).$$

Напомним, что контактная метрическая структура (η, ξ, φ, g) на многообразии M называется структурой Сасаки, если интегрируема почти комплексная структура J на $M \times \mathbf{R}$, определенная формулой

$$J(X, f\partial t) = (\varphi X - f\xi, \eta(X)\partial t).$$

Здесь касательный вектор к $M \times \mathbf{R}$ представлен в виде пары $(X, f\partial t)$, где X – касательный вектор к M и $f\partial t$ – касательный вектор к \mathbf{R} , ∂t – базисный вектор на \mathbf{R} . В нашем случае $M = G_3$, $\xi = e_5$, $M \times \mathbf{R} = G_3 \times \mathbf{R} e_6$. Тогда почти комплексную структуру на $\mathbf{q}_3 = \mathbf{h} \oplus \mathbf{R} e_6$ определим формулой

$$J(X, fe_6) = (\phi X - fe_5, \eta(X)e_6).$$

В этом случае

$$J(e_i) = J(e_i, 0e_6) = (\varphi e_i, \eta(e_i)e_6) = (\varphi e_i, 0) = \varphi(e_i), i = 1, 2, 3, 4,$$

$$J(e_5) = J(e_5, 0e_6) = (\varphi e_5, \eta(e_5)e_6) = (0, e_6) = e_6, J(e_6) = J(0 - e_5, \eta(0)e_6) = (-e_5, 0) = -e_5.$$

Вычисления показывают, что данная почти комплексная структура J интегрируема. Поэтому (η, ξ, φ, g) – структура Сасаки на **h**.

Определим 2-форму на $\mathbf{g}_3 = \mathbf{h} \oplus \mathbf{R} e_6$

$$\omega_c = e^1 \wedge e^2 + e^3 \wedge e^4 + e^5 \wedge e^6$$
 (7)

и ассоциированную метрику $g(X, Y) = \omega_c(X, JY)$. Получаем эрмитову структуру (ω_c, J, g) скалярной кривизны S = -1 и с тензором Риччи вида:

$$Ric = \frac{1}{2} \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Полукэлеровы структуры. К сожалению, 2-форма (7) не обладает свойством полукэлеровости: $\omega \wedge d\omega = 0$. Однако следующая 2-форма

$$\omega = e^1 \wedge e^2 - e^3 \wedge e^4 + e^5 \wedge e^6 \tag{8}$$

является полукэлеровой.

Найдем согласованную с формой (8) нильпотентную комплексную структуру. Берем общую почти комплексную структуру $J=(\psi_{ij})$ и потребуем условия согласования $\omega(X,JY)+\omega(JX,Y)=0$, инвариантности центра, свойства $J^2=-Id$ и выполнения условия интегрируемости $N_J=0$.

Инвариантность центра $Z = \mathbf{R}\{e_5, e_6\}$ имеет место при следующих значениях параметров:

$$\psi_{15} = 0$$
, $\psi_{16} = 0$, $\psi_{25} = 0$, $\psi_{26} = 0$, $\psi_{35} = 0$, $\psi_{36} = 0$, $\psi_{45} = 0$, $\psi_{46} = 0$.

Согласованность выполняется при следующих условиях на параметры:

$$\begin{array}{c} \psi_{22}=-\psi_{11},\,\psi_{41}=-\psi_{23},\,\psi_{24}=\psi_{31},\,\psi_{61}=0,\,\psi_{51}=0,\,\psi_{42}=\psi_{13},\,\psi_{14}=-\psi_{32},\,\psi_{62}=0,\,\psi_{52}=0,\\ \psi_{44}=-\psi_{33},\,\psi_{66}=-\psi_{55},\,\psi_{63}=0,\,\psi_{64}=0,\,\psi_{53}=0,\,\psi_{54}=0. \end{array}$$

В результате получаем следующий вид матрицы почти комплексной структуры J:

$$J = \begin{bmatrix} -\psi_{22} & \psi_{12} & \psi_{13} & \psi_{14} & 0 & 0 \\ \psi_{21} & \psi_{22} & \psi_{23} & \psi_{24} & 0 & 0 \\ -\psi_{24} & \psi_{14} & -\psi_{44} & \psi_{34} & 0 & 0 \\ \psi_{23} & -\psi_{13} & \psi_{43} & \psi_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\psi_{66} & \psi_{56} \\ 0 & 0 & 0 & 0 & \psi_{65} & \psi_{66} \end{bmatrix}.$$

Потребуем выполнения условия $J^2 = -Id$ и равенства нулю тензора Нейенхейса. Получаем

$$J = \begin{bmatrix} \psi_{11} & \psi_{12} & 0 & 0 & 0 & 0 \\ -\frac{\psi_{11}^2 + 1}{\psi_{12}} & -\psi_{11} & 0 & 0 & 0 & 0 \\ 0 & 0 & \psi_{33} & \psi_{34} & 0 & 0 \\ 0 & 0 & -\frac{\psi_{33}^2 + 1}{\psi_{34}} & -\psi_{33} & 0 & 0 \\ 0 & 0 & 0 & 0 & \psi_{55} & \psi_{56} \\ 0 & 0 & 0 & 0 & -\frac{\psi_{55}^2 + 1}{\psi_{56}} & -\psi_{55} \end{bmatrix}.$$
(9)

Пусть $g_J(X,Y) = \omega(X,JY)$ — ассоциированная метрика. Получаем семейство полукэлеровых структур (ω,J,g_J) с оператором Риччи

$$Ric = \frac{\psi_{55}^2 + 1}{2\psi_{56}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -\frac{2\psi_{56}\psi_{55}}{\psi_{55}^2 + 1} & 0 \end{bmatrix}$$

и скалярной кривизны $S = \frac{\psi_{55}^2 + 1}{\psi_{56}}$.

Полу-паракэлеровы структуры. Алгебра Ли \mathbf{g}_3 является полупрямым произведением двух коммутативных подалгебр, порожденных векторами e_1 , e_3 , e_5 и e_2 , e_4 , e_6 , соответственно. Поэтому на \mathbf{g}_3 существует интегрируемая паракомплексная структура

$$P = \text{diag}\{+1, -1, +1, -1, +1, -1\}.$$

Условие согласования $\omega(PX, PY) = -\omega(X, Y)$ с 2-формой (8), очевидно, выполняется. Пусть $g(X, Y) = \omega(X, PY)$ – ассоциированная метрика. Получаем семейство полупаракэлеровых структур (ω, P, g) с Риччи-плоской псевдоримановой метрикой g.

Полученные результаты для группы G_3 сформулируем в следующем виде.

Теорема 3. Группа G_3 , не допускающая левоинвариантных симплектических структур имеет многопараметрическое семейство (9) левоинвариантных нильпотентных комплексных структур J, согласованных с полукэлеровой 2-формой (8). В этом случае тройка (ω, J, g) , где $g(X, Y) = \omega(X, JY)$, определяет полукэлерову структуру ненулевой кривизны Pиччи. Γ руппа G_3 допускает также левоинвариантную полу-паракэлерову Pиччи-плоскую структуру.

Список источников

- Goze M., Khakimdjanov Y., Medina A. Symplectic or contact structures on Lie groups // Differential Geometry and its Applications. 2004. V. 21 (1). P. 41–54. doi: 10.1016/j.difgeo.2003.12.006
- Salamon S. Complex structures on nilpotent Lie algebras // J. Pure Appl. Algebra. 2001. V. 157.
 P. 311–333. doi: 10.1016/S0022-4049(00)00033-5
- 3. Смоленцев Н.К. Левоинвариантные почти пара-эрмитовы структуры на некоторых шестимерных нильпотентных группах Ли // Вестник Томского государственного университета. Математика и механика. 2019. № 58. С. 41–55. doi: 10.17223/19988621/58/4
- 4. *Gray A., Harvella L.M.* The sixteen classes of almost Hermitian manifolds and their linear Invariants // Ann. Math. Pura Appl. 1980. V. 123. P. 35–58. doi: 10.1007/BF01796539
- Hitchin N.J. The geometry of three-forms in six dimensions // J. Diff. Geom. 2000. V. 55.
 P. 547–576. doi: 10.4310/jdg/1090341263
- Cordero L.A., Fernández M., Ugarte L. Pseudo-Kähler metrics on six-dimensional nilpotent Lie algebras // J. of Geom. and Phys. 2004. V. 50. P. 115–137. doi: 10.1016/J.GEOMPHYS. 2003.12.003
- 7. *Алексеевский Д.В., Медори К., Томассини А.* Однородные пара-кэлеровы многообразия Эйнштейна // Успехи математических наук. 2009. Т. 64, вып. 1 (385). С. 3–50. doi: 10.1070/RM2009v064n01ABEH004591
- Magnin L. Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras //
 Intern. J. of Algebra and Computation. 2007. V. 17 (1). P. 77–113. doi: 10.1142/S021819
 6707003500
- Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. and its Appl. 2008.
 V. 26 (5). P. 544–552. doi: 10.1016/j.difgeo.2008.04.001

References

- 1. Goze M., Khakimdjanov Y., Medina A. (2004) Symplectic or contact structures on Lie groups. *Differential Geometry and its Applications*. 21(1). pp. 41–54. DOI: 10.1016/j.difgeo.2003.12.006.
- Salamon S. (2001) Complex structures on nilpotent Lie algebras. *Journal of Pure and Applied Algebra*. 157. pp. 311–333. DOI: 10.1016/S0022-4049(00)00033-5.
- Smolentsev N.K. (2019) Left-invariant almost para-hermitian structures on some six-dimensional nilpotent lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika Tomsk State University Journal of Mathematics and Mechanics. 58. pp. 41–55. DOI: 10.17223/19988621/58/4.
- Gray A., Harvella L.M. (1980) The sixteen classes of almost Hermitian manifolds and their linear invariants. *Annali di Matematica Pura ed Applicata*. 123. pp. 35–58. DOI: 10.1007/BF01796539.
- 5. Hitchin N.J. (2000) The geometry of three-forms in six dimensions. *Journal of Differential Geometry*. 55. pp. 547–576. DOI: 10.4310/jdg/1090341263.
- Cordero L.A., Fernández M., Ugarte L. (2004) Pseudo-Kähler metrics on six-dimensional nilpotent Lie algebras. *Journal of Geometry and Physics*. 50. pp. 115–137. DOI: 10.1016/J.GE-OMPHYS.2003.12.003.

- Alekseevsky D.V., Medori C., Tomassini A. (2009) Homogeneous para-Kähler Einstein manifolds. Russian Mathematical Surveys. 64(1), pp. 1–43. DOI: 10.1070/RM2009v064n01ABEH004591.
- Magnin L. (2007) Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras. *International Journal of Algebra and Computation*. 17(1). pp. 77–113. DOI: 10.1142/S0218196707003500.
- 9. Diatta A. (2008) Left invariant contact structures on Lie groups. *Differential Geometry and its Applications*. 26(5). pp. 544–552. DOI: 10.1016/j.difgeo.2008.04.001.

Сведения об авторах:

Смоленцев Николай Константинович – доктор физико-математических наук, профессор кафедры фундаментальной математики Кемеровского государственного университета (Кемерово, Россия). E-mail: smolennk@mail.ru

Чернова Карина Владиславовна – студент Института фундаментальных наук Кемеровского государственного университета (Кемерово, Россия). E-mail: karina.chernova.2002@mail.ru

Information about the authors:

Smolentsev Nikolay K. (Doctor of Physical and Mathematical Sciences, Professor of Department of Fundamental Mathematics, Kemerovo State University, Kemerovo, Russian Federation). E-mail: smolennk@mail.ru

Chernova Karina V. (Student of Institute of Fundamental Sciences, Kemerovo State University, Kemerovo, Russian Federation). E-mail: karina.chernova.2002@mail.ru

Статья поступила в редакцию 16.05.2024; принята к публикации 09.06.2025

The article was submitted 16.05.2024; accepted for publication 09.06.2025