Физика магнитных явлений

ФИЗИКА МАГНИТНЫХ ЯВЛЕНИЙ

УДК 535.39 DOI: 10.17223/00213411/68/7/10

Высокоизбирательный полосно-пропускающий фильтр для входного мультиплексора спутниковой связи С-диапазона*

Б.А. Беляев 1,2 , А.М. Сержантов 1,2 , Я.Ф. Бальва 3 , А.А. Лексиков 3 , С.Д. Крёков 2,3 , К.И. Поминов 3 , И.Е. Бурлаков 2,3

¹ Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева, г. Красноярск, Россия

² Сибирский федеральный университет, г. Красноярск, Россия

³ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, г. Красноярск, Россия

Канальный полосно-пропускающий фильтр мультиплексора спутниковой связи разработан на конструкции, состоящей из двенадцати коаксиальных резонаторов. Для уменьшения группового времени запаздывания и существенного повышения избирательности устройства использованы две дополнительные индуктивные и две дополнительные емкостные связи между несмежными резонаторами. Это позволяет расположить по два полоса затухания справа и слева вблизи полосы пропускания. Для уменьшения неравномерности в полосе пропускания коэффициента передачи применялся специальный метод, заключающийся в некотором уменьшении потерь на отражение вблизи краев полосы пропускания фильтра. Это позволило с использованием электродинамического анализа 3D-модели разработанной конструкции синтезировать миниатюрный фильтр с центральной частотой полосы пропускания $f_0 = 4$ ГГц и ее шириной $\Delta f = 45$ МГц по уровню 0.8 дБ от уровня минимальных потерь. При этом измеренные характеристики изготовленного опытного образца фильтра показали хорошее согласие с рассчитанными.

Ключевые слова: коаксиальный резонатор, полосно-пропускающий фильтр, матрица связи, дополнительная связь.

Введение

Как известно, одной из важнейших проблем, существующих при создании спутниковых систем связи, является разделение близко расположенных каналов передачи информации. Для решения этой проблемы создаются мультиплексоры на основе высокоизбирательных СВЧ-фильтров с узкими полосами пропускания и высокой крутизной склонов амплитудно-частотных характеристик (АЧХ) [1, 2]. Главные требования, предъявляемые к таким устройствам, – небольшие габариты и масса, малая неравномерность АЧХ и группового времени запаздывания (ГВЗ) в полосе пропускания. Кроме того, при изменении температуры должна обеспечиваться высокая стабильность основных характеристик фильтров.

Традиционно канальные фильтры спутниковых мультиплексоров реализуются на основе волноводных резонаторов, представляющих собой отрезки полых волноводов прямоугольного [3] или круглого сечения [4]. Такие резонаторы на частотах выше $10~\Gamma\Gamma$ ц имеют небольшие размеры при достаточно высокой собственной добротности. Например, в Ки-диапазоне для моды H_{10} собственная добротность резонатора, выполненного из отрезка полого волновода прямоугольного сечения, может достигать $Q_0 = 7 \cdot 10^3$ [5]. Однако на частотах С-диапазона (3.4–8.0 $\Gamma\Gamma$ ц) резонаторы на основе полых волноводов имеют неприемлемо большие размеры, что не позволяет создавать на их основе устройства с небольшими габаритами и массой для спутниковых систем связи. Одним из возможных путей решения данной проблемы является применение резонаторов на основе отрезков коаксиальной линии передачи. В настоящей работе разработана новая конструкция полоснопропускающего фильтра двенадцатого порядка на основе четвертьволновых коаксиальных резонаторов с воздушным заполнением.

^{*} Работа выполнена в рамках целевого финансирования (гранта) № 308 от 18.12.24 г. между ФИЦ КНЦ СО РАН, Краевым фондом науки и АО «РЕШЕТНЁВ».