BECTHHUK TOMCKOI'O 'TOCYAAPCTBEHHOI'O YHUBEPCUTETA

2025 VYnpasieHue, BBIYUCIUTENIbHAS TEXHUKA U UHPOpPMaTHKa Ne 72
Tomsk State University Journal of Control and Computer Science

Original article
UDC 681.516
doi: 10.17223/19988605/72/9

Shortages of perishables control for a stochastic inventory system
in retail through dynamic pricing with an adjustable factor

Anna V.! Kitaeva, Yu Cao?

1.2 National Research Tomsk State University, Tomsk, Russian Federation
Lkit1157@yandex.ru
2ch.cy@stud.tsu.ru

Abstract. This paper examines an inventory system of a perishable product facing compound Poisson demand with
price-dependent intensity. The proposed model includes an adjustable factor that influences the intensity of demand
and, consequently, the possibility of shortages. By employing diffusion approximation of the inventory level process,
stochastic properties of the selling process are obtained, and the expected revenue is derived with a penalty for the
shortages. Consideration of the shortages’ period allows us to expand the scope of applicability the linear approximation
of a dependence of demand intensity on price.
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AHHOTanus. PaccMaTpuBaeTcs ccTeMa ynpaBiIeHUst 3al1acaMy CKOPOIIOPTSIIErocs ToBapa MpH CIPOCe, OMHUCHI-
BAa€MOM COCTaBHBIM ITyaCCOHOBCKHMM IIPOLIECCOM C MHTEHCHBHOCTBIO, 3aBHCsIIEH OT meHbl. [Ipemmaraemas Monensb
BKJIFOYAET B ce0s1 perynupyromuii Gpaxrop, BIUSIOLMN Ha HHTEHCUBHOCTB CIIpOca H, CJIE0BAaTENbHO, Ha BO3MOXKHOCTb
BO3HHMKHOBEHHMS HEXBATKM ToBapa. B pamkax 1uy3rOoHHOMN anmpoKCHMALK YPOBHS 3aI1aCOB UCCIIEYIOTCS CTOXa-
CTHUYECKHE CBOMCTBA Mpoliecca MPOAAK M HAXOJUTCS CPEAHsS BHIPYUKa C y4eTOM mITpada 3a HeXBaTKy ToBapa. Bae-
JCHUEC NIEPHUOJia HEXBATKH TOBapa NO3BOIACT paCllMPUTh 001acTh NPUMEHHUMOCTH JIMHEHHOM anmnpoKCumMaluu 3aBUCHu-
MOCTH MHTEHCHBHOCTH CIIPOCa OT IICHHI.
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Introduction

Dynamic pricing has been extensively studied as a key strategy for managing perishable products, par-
ticularly within a finite selling horizon. Dynamic pricing, which involves continuously adjusting prices in
response to time-dependent variables such as the remaining shelf life of the product and its inventory level,
effectively addresses the challenge of perishability by aligning supply with temporally fluctuating demand.
As emphasized in [1], such pricing strategies not only offer financial advantages to retailers but also lead to
a substantial decline in waste, which is especially critical in the context of food products. A growing body of
literature confirms that dynamic pricing mitigates the risk of unsold inventory and helps to avoid the ineffi-
ciencies associated with traditional static pricing approaches [2]. While extensive research has explored dy-
namic pricing mechanisms, the specific challenge of managing shortages has garnered focused attention in
recent years, particularly those resulting in lost sales [3].

Recent studies have highlighted the value of dynamically adjusting prices not only to stimulate demand
for aging inventory but also to control the sales rate in order to reduce the likelihood of stock outs during the
selling period [4, 5]. In setting without replenishment opportunities, lost sales represent a critical concern, as
unmet demand directly translates to revenue loss and diminished customer satisfaction. In [6], an integrated
model of dynamic pricing and inventory control under a lost sales framework is proposed, highlighting that
optimal pricing strategies must incorporate both the stochastic characteristics of demand and the perishability
of goods. The importance of pricing strategies for addressing the risk of lost sales in perishable goods markets
has been well recognized in recent studies [7, 8].

We proposed a basic stochastic dynamic price control model in [9], which allows us, triggering pur-
chases, to sell all a perishable product at hand during its lifetime almost surely. In [10], a multiplicative ad-
justable factor was introduced into the basic model, which helps address the problem of fitting the demand rate
to real-life situations and allows for customization of the sales process. In [11], we obtained optimal weight
function approximation for large lot sizes that depends on a parameter and considered two close to optimal
models of the dependence of demand intensity on price, controlling the shortages by changing the parameter.
In this paper, we extend the model introduced in [10] by incorporating the moment of the shortages occurrence
and the corresponding penalty in the expected revenue.

1. Problem statement

We commence by formulating the fundamental assumptions and mathematical framework. Suppose
a supplier acquires an initial stock Qo per unit price d at the beginning of the sales cycle T, where additional
procurement is prohibited during this period. Market demand adheres to a compound Poisson process governed
by intensity A(c(t)), with c=c(t) representing the time-varying unit selling price. Individual customer pur-
chases are treated as independent and identically distributed random variables, characterized by first-order
moment &, and second-order moment a, .

For analytical tractability, we employ a diffusion approximation of the inventory level process Q(t),
which follows the stochastic differential equation

dQ(t) = —a,A(c(t))dt +/a,A(c(t))dw(t),

where w(-) is the Wiener process.

We adopt the following pricing control:

_.QM
alx(c(t))_KT e 1)

that is, the product’s average sales rate and its instantaneous sales rate must be proportional; coefficient « > 0.
We will call control model (1) the linear one.

The idea of introducing adjustable factors into idealized dynamic pricing models in order to adapt to
real market conditions as well as a lot of results in inventory control modelling belongs to Alexander Fedo-
rovich Terpugov (1939-2009), former Head of the Department of Probability Theory and Mathematical Sta-
tistics at Tomsk State University, outstanding scientist and teacher.
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It follows that the stock level process satisfies the following equation:
do(t) = - 20 gt + 122 90 4y
T-1 aT-t

Below we use (2) to get the properties of the stock level process. Then we propose a heuristic method

for determining the moment when the shortages occur, introduce appropriate penalties, and obtain the expected
3)

revenue with the penalties.
2. The stochastic properties of the selling process

Within the framework of the approximation, the expectation of the stock level process
E{Q(t)} =Q(t)=Qy(1-t/T)".

a2 2
dQ =-2x Q +K2
dt T-t aT-t

Denote &(t) =E {Q2 (t)}. Applying Ito’s formula and averaging, we get
Q.

subject to Q%(0) = Q2.
It follows that the variance of the stock level process
14 [1_(1_£j j
T
(4)

Var{Q(t)}=:—2Qo[ T
1
The second initial moment of Q(+)
_2_2 _l K B _L K ) _l 2K
Q —alQo[l Tj [1 [1 Tj }Qo(l Tj :

By applying Ito’s formula and the Laplace transform, we obtain the probability density function of the

NE-UT)Q/a | 2By(L-UT)" Qo
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inventory level
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f(q,t)=exp
1-(1-yT1)"
where B=2a,/a,, I;(-) is the first order modified Bessel function of the first kind, and 3(-) represents the
Dirac delta distribution.
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Fig. 1. F,(-) dependence on t/T for k=1, 3, and 5
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From (5) it follows that the cumulative distribution function of the length of time t it takes to sell Q,
1-t/T)"
F.(t)=exp —BQO(—/)K .
1-(1-¢/T)
Thus, F, (T):l, and the probability of the shortages increases when «x increases.
Figure 1 illustrates the behavior of F_(t) for BQ, =150; x =1, 3, and 5.

The expectation of the selling duration t

E{r}:}(l— F(t))dt=T [1—}exp(—BQo i - ]dzj .
0 0

A
1-z

For BQ, >>1, we get

1 1 o _ F((K-l—l)/l{)
E{r}zT(l—Iexp —BQyz" dzj:T[l——KJU(1 e ”dU}T(l——K - (6
[ool-parr) K(BQo)" 0 (pQo)"

where I'(+) is the gamma function.

3. The expected revenue taking the shortages into account

F((K+1)/K)
(BQo)""

We take (6) as the moment of the shortages occurrence Ty, T1 = Txo, Where x, =1— , and

. In the simulation, the moment of shortages occurs when the available

_ Ir'“((«+1)/x
cform))-a(m) - )
stock is less than the quantity requested by the last consumer.

The simulation results for the duration of the selling period are presented in Figure 2 and are obtained
through a thinning algorithm implementation of a non-homogeneous Poisson process simulation with
1,000 replications. Mean values are reported as the outcomes. The analysis employs parameter values in the
range 1<k <5and exams two distributions of purchases: uniformly distributed over (0,10) and exponentially
distributed with parameter 5. The theoretical prediction (black curve) is compared with the simulated results
for uniform (red curve) and exponential (blue curve) purchases distributions.

10 h T T T T T T T
Uniform purchases’distribution

95k ) . === === Exponential purchases’distribution | |
h Theoretical curve

8.5
T

75F

6.5

Fig. 2. T1 dependence on K ; T =10, Qo = 500, purchases are Uniform (0,10) or Exp (5)
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Parameter «k has a significant impact on the shortages’ duration. When « > 2, the shortages period may
exceed 10% of the total sales cycle length.

Let us consider linear approximation of the intensity-of-price dependence

ct)-c
X(C)=7\.0_7\11 () 01 (7)
Co

where ¢y denotes the basic price level associated with initial demand intensity Lo, while A1 > 0 reflects the
demand response to price deviations from its baseline. Linear price-demand relationships represent a standard
modeling approach; see, for example, [12].

Combining (1) and (7) we get

The average revenue per unit of time

E{c(t)m(c)}zcoﬁ{(lﬁo X Q“)jQ(t)}:co[HhJKT@ @

A oan T—t )T -t A —t Cah (T-t)*

Finally, taking into account (3) and (4) we get

E{c(t)air(c)}= co(1+ MJ TQOt(l_%jK_

2 K K 2K
_COK—QOZ ﬁ(l_l] 1_(1_£j _{1_1) Q |-
Let us consider the expected revenue prior to shortages
_ T;
S =a, [ E{ct)r(t)}dt
0
The three integrals below are straightforward to obtain:

le(l—LjK Tdt (%)

0 T —t K
k-1
. M forKil;
oot dt T(k-1)
j 1_? 2=
i (T=1" | _n(=x) fork =1
T el
2x-1
T 21 M fOI"KiE;
1(1 tj dt T(2x-1)
J _? 2 =
0 (T-1)" | In(1-x) foret
T
In particular, when « = 1, the resulting model of retail price control (1) reduces to the form

Q
ah(c(t))= ( )
revenue is derlved by considering small deviations of the price from its stationary value, in this paper, adjust-
able coefficient « is introduced, which enables us to consider the linear dependence of the demand intensity
on the price. The expected revenue for k = 1 is as follows

A 1 Q| a 1 a, Q 1
S, = 1420 - = |4 2050 R g = | 22 X0\ = ||
. C°Q°(+>»J[ BQJUJ (af n(BQoJJ{af aJ[ BQJ] ©

, Which is the same as the basic model in [9]. Unlike the approach in [9], where the expected
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while the main part of the expected revenue of basic model in [9] Sy, = cOQO( —hi}

M BQy

The observed discrepancy can be attributed to two key aspects. First, here we introduce T as the time
point at which the shortages occur. Notably, our framework accommodates the possibility of shortages even

when k = 1; in this case, T, =T (1—%]. This contrasts with the approach adopted in [9], where the selling
0

period is T and a consideration of the shortages is not incorporated. Secondly, in [9] we employ only a linear
part of Taylor expansion of product c(t)A(c(t)) .

For k > 1 the expected revenue without taking into account the penalty for the shortages

§ = Qs (1+7£—°J(1_(1_XO)K)_

1

- - ©)
_coQoKZ[y—(l—m 1_[2&}1—(1—%)2 J

MT |l (k-1 al a ) (2c-1)

We adapt an assumption where unmet demand results in lost sales, and the demand intensity during
stock out’s period remains constant, defined by the intensity at moment T

k-1

Ac(Ty)) = Kﬂ —x Qo (MJ K&(l— X )K‘l;

T

a(T-T,) aT (B, )"

analogously, the retail price during this period ¢(T,)=¢, 1+h—1< 0% (1—x0)'<_1 .

We define the average lost sales as follows

_ o A ‘-
Ss = —ac(T)MeT))(T - T, ) = —¢oQok(1-X,) (“x_:_'{%(l‘xo) 1].

Thus, the expected revenue for k > 1

So1=C0Qp (1+%j(1—(1— xo)“)—coQoK(l— Xo)" [1+%_K&(1_ X )“—1}

1 1 T

o e (10)
_ CoQox’ [az 1-(1-%) ' _(az QoJl_(l_XO)Z_lJ.

Mt \a (1) ez s (2600)

The expected revenue is monotonically decreasing with respect to «, and weighted revenue S,_, / a,c,

depends on four dimensionless system’s characteristics Q, /8, A / Ay, AT, &, / @2, except k. Ratio Q /&
is connected with the number of purchases during the selling period, that is, the intensity of the demand; A, / A,
reflects the relative base intensity of the demand in relation to its price sensitivity; A,T is the aggregate sensi-

tivity of demand to price deviations within the selling period; and ratio a, /al2 characterizes the coefficient of
variation of the purchases.

In Figure 3, the results of simulation of weighted revenues dependence on k are presented for different
sets of the system’s characteristics for uniform and exponential distributions of purchases, T = 10. The black
curves represent the theoretical results, and the red curves are the simulation results.

Analogously the models in [11], Figure 3 demonstrates that increasing A, /A, and AT leads to a sig-
nificant increase in the revenue, and ratio a/a:* that governs purchases’ variation exhibits negligible influence
on the revenue, as evidenced by the final two subplots. The theoretical revenues closely align with the simu-
lated ones.
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I_Theoretical results ====== Simulation results I
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The expected revenue curve is negatively correlated with adjustable factor  and exhibits the opposite
behaviour compared with the two near-optimal models in [11], where the expected revenue is positively cor-
related with parameter C. The expected revenues’ maximums are achieved when the adjustable parameters are

equal to 1.

The revenue of the linear model is a concave function with respect to Qo/as. Figure 4 depicts weighted
revenue S__, / a,c, dependence on Qo/as for k = 1,2, 2, and 2,5; Ay / Ay =4, AT =100, a, /a8’ =4/3.
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As « > 1 decreases, the duration of the shortages period also decreases, thereby mitigating associated
penalties and enhancing the corresponding revenue.

Conclusion

The dynamic price control model proposed in this paper can control shortages by adjusting the factor «.
We derived the stochastic properties of the selling process and obtained the expected revenue that considers
the penalties for the shortages treating unsatisfied demand as lost sales.
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The expected revenue in (10) depends on four dimensionless system characteristics:
Qo /ay, A/, AT, &, /aZ. If the initial lot size satisfies natural condition A,Ta, =Qj,, then the number of
the system characteristics are reduced to three, as ratio Q, / &, can be represented in terms of A, /A, and AT.
These two values have a crucial influence on the revenue as Figure 3 demonstrates: an increase in A, /A, and
MT leads to a higher retail price and enhances the expected revenue.

Numerical analysis indicates that as the adjustable factor approaches 1 from above, the penalties in-
curred from stock out period reduced thereby enhancing revenue. The maximum revenue achieved when
the adjustable factor is equal to 1, consistent with the two models in [11]. This result is quite natural, since
the basic model ensures equality of instantaneous and average sales rates at any moment of the sales cycle,
idealizing the situation. The papers related to the adjustable factors [10, 11, 13] aim to adapt the basic model
to real life situations and to estimate the corresponding losses.

Our future research will focus on addressing more detailed numerical comparisons the proposed models
under shortages and leftovers scenarios, in order to highlight their distinctive features and support their accu-
rate application in practice.
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