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Abstract. In this paper, the generalization ability of deep learning models used to solve the sound source localiza-
tion problem with a spatial resolution of 10° is evaluated when the configuration settings are changed. The generaliza-
tion ability of the models was evaluated in a closed reverberant environment using an orthogonal microphone array.
Two models were considered: SI-GCC-CNN, which is based on combining the features of sound intensity and gener-
alized cross-correlation - phase transform as input data for convolutional neural networks, and SI-CNN, which is based
on feeding the features of the sound intensity into the convolutional neural network. Simulation and modeling results
show that the SI-GCC-CNN model is effective in its generalization ability and outperforms the SI-CNN model, achiev-
ing an improvement in localization accuracy by 22,1% when changing the size of the room, by 15,6% when changing
the location of the microphone array and by 32% when changing the distance between the source and the center of the
microphone array.
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AnnoTtamus. OneHuBaercst 0000maromas cCocoOHOCTh MOJIENEl TITyOOKOT0 00YYEHUs, UCTIONB3YEMBIX JJIS pe-
[ICHHST 33a49H JIOKAIN3AUH HCTOYHHKA 3BYKa C MPOCTPAHCTBEHHBIM paspemieHneM 10°, mpu M3MEHEHHH HACTPOEK
koH¢wurypanuu. Odo01aromnas crrocoOGHOCTh MOJIeNel OLIeHHBANIACh B 3aMKHYTOH peBepOepHpyIOLIeH Cpelie ¢ HCTIONb-
30BaHHEM OPTOrOHAILHOW MHUKPOGOHHOH pemeTku. bouti pacemorpenst e moaeinu: SI-GCC-CNN, koTtopast ocHO-
BaHa Ha 0OBEIMHCHHUH [IPH3HAKOB HHTCHCUBHOCTH 3ByKa M 000OIICHHON Kpocc-Koppemsuu — ha3oBoro npeodpaso-
BaHMS B KQUeCTBE BXOJHBIX JAHHBIX JJI CBEPTOUHBIX HeHpoHHBIX cereil, 1 SI-CNN, koTopas ocHOBaHa Ha Mojaye
NPU3HAKOB WHTEHCUBHOCTH 3BYKa B CBEPTOYHYIO HEUPOHHYIO CETh. Pe3ybTaThl MOACIUPOBAHMS U MMHUTAIINH TTOKA-
3b1BatoT, 4to Mojeib SI-GCC-CNN sddektuBHa Mo cBoell 0000maroNIeli CIOCOOHOCTH M MPEBOCXOIUT MOJCTb
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SI-CNN, nocturas yayd4mieHds TOYHOCTH JioKanu3anuu Ha 22,1% 1npu u3MEHEHUH pa3Mepa momenieHus, Ha 15,6%
IpU U3MEHEHUH MECTOIIOJIOKEHNS MUKPO(OHHOIH pemeTk u Ha 32% MpHU N3MEHEHHUH PACCTOSHHS MKy HUCTOYHH-
KOM H IIEHTPOM MHKPO(OHHON PELIETKH.

Knrouessble ciioBa: 00001maromas criocoOHOCTh; MOJEH IITyOOKOro o0y4YeHus; JOKaIu3alys HCTOUHIKA 3BYKa;
peBepOepupyromas cpeia; OpToroHajabHass MUKPO(QOHHAS pelIeTKa; HHTEHCHBHOCTD 3ByKa; 0000IIEHHAsT KPOCC-KOp-
persinust — a3oBoe mpeodpazoBaHKe; CBEPTOUHBIC HEHPOHHEIE CETH.
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JUTSL JIOKaJM3alii UCTOYHMKA 3BYKa // BectHUK TOMCKOrO TOCYIapCTBEHHOTO YHUBEPCHTETA. YTIPaBICHUE, BBIYHCIIH-
TeJbHasi TeXHUKa 1 nHopmaruka. 2025. Ne 72. C. 107-113. doi: 10.17223/19988605/72/11

Introduction

The problem of sound source localization (SSL) can be defined as estimating the direction of acoustic
sources or objects that reflect acoustic signals, which can be applied in various complex environments. SSL is
an active research topic in the field of acoustic signal processing using microphone arrays, it has many practical
applications in the fields of engineering and technology, such as automatic camera tracking for teleconferenc-
ing, human-robot interaction, hearing aids, and remote speech recognition. SSL is also of paramount im-
portance in geophysics and non-destructive testing of materials.

To acquire acoustic signals with further analysis of their characteristics, microphone arrays are used,
which consist of a set of microphones located in space in a certain way to obtain spatial information about the
acoustic source. The spatio-temporal information obtained from the microphone array can be used to estimate
various source parameters (direction, distance).

Initially, the problem of SSL has been solved using traditional signal processing methods, such as time
difference of arrival (TDOA) [1], delay-and-sum beamformer (DAS) [2], multiple signal classification (MU-
SIC) [3] and generalized cross-correlation - phase transform (GCC-PHAT) [4]. However, these methods have
drawbacks due to the complexity of the acoustic characteristics of the environment, especially in the presence
of noise and echoes [5]. In recent years, with the advent and development of deep learning (DL) methods and
deep neural networks (DNNs) and their widespread use in the field of acoustic applications,
a new vector for the development of SSL has been outlined.

The main advantage of SSL based on DL methods is the inclusion of information on acoustic character-
istics in the learning process, while traditional methods are based only on spatial information [4]. As a result,
data-driven methods such as DL could outperform traditional methods by dealing with large amounts of data,
real or simulated. On the other hand, they are less able to generalize than traditional methods [5].

Designing DNNSs for a specific application often requires exploring (and possibly combining) different
architectures and tuning their hyperparameters. This has been the case with SSL in the last decade, and the
evolution of DL-based SSL methods has followed the general evolution of DNNs towards more complex ar-
chitectures or new efficient models. In other words, the DNN architectures used in SSL were often inherited
from other applications (related or more distant fields) simply because they have been shown to work well with
acoustic signals [6]. The literature relied on the same methodology, where different models were often com-
bined (in parallel and/or sequentially), such as convolutional neural networks (CNN) [7], recurrent neural net-
work (RNN) [8], convolutional recurrent neural network (CRNN) [9] and residual neural networks (ResNet) [10].

The effectiveness of DL-based SSL model is determined by its ability to generalize various aspects of
the configuration (for example, the distance between the source and the microphone array, noise levels, rever-
beration time, etc.), i.e. the ability to correctly classify new test data with features that differ from those ob-
tained during training and for different configuration settings. The ability of these models to generalize in noisy
and reverberant environments using small-sized microphone arrays remains a challenging task.

The use of a sound intensity (SI) vector as input features for the DL-based SSL model was first proposed
in [11], where superior performance has been demonstrated compared to traditional methods. Sl as input fea-
tures for CNN has proven its ability to work under noise and reverberation conditions when using small-sized
microphone arrays [12], however, this deep model has not been tested for its ability to generalize when
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changing some modeling conditions, such as room size and source distance. Although GCC-PHAT features
do not give good localization results when working with small-sized microphone arrays, they have proven
to be capable of generalization [13], because they depend on spatial information, while SI features depend
on physical characteristics of sound (pressure and particle velocity).

In [14], a deep model with a spatial resolution of 10" was proposed to solving the SSL problem in
a closed reverberant environment by integrating SI and GCC-PHAT features as input data for CNNs to utilize
the advantages of these features.

In this paper, the ability of the proposed model in [14] to generalize when the configuration settings are
changed will be tested.

1. Evaluation metric

In order to evaluate the effectiveness of the models, the localization accuracy is used as a performance
measure, which is defined as:

N
PA(%) = —2 %100,

Ns (1)
where Ns represents the total number of source directions being evaluated and Np is the number of source
directions correctly recognized. The direction of the source is considered to be correctly recognized if the
predicted direction is within the spatial resolution of the model, that is, the deviation of the predicted direction
from the actual direction is within +0o for spatial resolution 6o [13].

2. Evaluating the Model's Ability to Generalize

The generalization ability of both the proposed model in [14] and the SI-CNN model [12] is evaluated.
In the model SI-CNN, an improved feature extraction scheme based on Sl estimation was proposed by decou-
pling the correlation between sound pressure and particle velocity components in the whitening construction,
and feeding these features into CNN, which in turn estimates the direction of the source.

The SI-CNN model was trained and validated under the same simulation conditions and on the same
training and validation dataset [14]. The training sample size was 6000 samples for each of the two models,
the validation dataset size was 1000 samples. The ability of trained models to generalize when changing the
configuration settings (modeling conditions) that were assumed when training the models will be considered.

Three settings will be changed (room size, microphone array location and distance between the source
and the center of the microphone array) and the trained models will be re-evaluated on a new dataset that is
generated taking into account the change in modeling conditions.

2.1. Changing the room size (y-dimension)

20 different room sizes are considered while maintaining the same shape, where the y-dimension of the
previously defined room varies from 4 m to 20 m and in 19 equal steps. The other two dimensions x and z
change while maintaining constant ratios with the y-dimension. Here attention is drawn to the need to vary
RT60 corresponding to each size, according to the Sabin formula [15], as RT60 increases with the increase in
room size, and therefore small-sized rooms reverberate less than large-sized rooms. The room size ranges from
(6,67, 4, 1,78) m to (33,33, 20, 8,89) m. To create a test dataset, 200 sentences are randomly taken from the
TIMIT test database and 200 random directions are generated. For each room size, 10 test samples are gener-
ated, and a total of 200 test samples are generated. The performance of the pertained models is evaluated on
test samples corresponding to each room size.

A graph of the localization accuracy of both the proposed model and the SI-CNN model when changing
the size of the room is presented in Fig. 1.
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Fig. 1. Evaluating the ability of both the proposed model and SI-CNN model to generalize when changing the room size

From the simulation results presented in Fig. 1, it is clear that the proposed model proved to be effective
in generalization when changing the size of the room and a localization accuracy with an average value
of 99,5% was achieved, while the SI-CNN model achieved an average accuracy of 81,5%.

2.2. Changing the microphone array location (Center distance)

20 different locations of the center of the microphone array in the room are considered, with the location
of the center varying from (7,5, 4,5, 1,5) m (the first location adopted in the modeling process) to (12,86, 6,86,
0,14) m and with 19 equal steps. To create a test dataset, 200 sentences are randomly taken from the TIMIT
test database and 200 random directions are generated. For each center location, 10 test samples are generated,
for a total of 200 test samples.

A graph of the models' localization accuracy when changing the microphone array location is shown in
Fig. 2 (x-axis represents the distance between each center location of the microphone array and the first loca-
tion).
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Fig. 2. Evaluating the ability of both the proposed model and SI-CNN model to generalize
when changing the microphone array location

The proposed model achieved a localization accuracy of 100%, while the SI-CNN model achieved an
average accuracy of 86,5%.

2.3. Changing the distance between the source and the center of the microphone array (Source distance)

20 different distances between the acoustic source and the center of the microphone array are considered,
with the distance varying from 2,1 mto 4,4 m and in 19 equal steps. To create a test dataset, 200 sentences are
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randomly taken from the TIMIT test database and 200 random directions are generated. For each distance,
10 test samples are generated, a total of 200 test samples are generated.

A graph of the models' localization accuracy when changing the distance between the source and the
center of the microphone array is shown in Fig. 3. The proposed model achieved a localization accuracy
of 99%, while the SI-CNN model achieved an average accuracy of 75%.
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Fig. 3. Evaluating the ability of both the proposed model and SI-CNN model to generalize
when changing the distance between the source and the center of the microphone array

Table shows the values of the localization accuracy metric for both the SI-CNN model and the proposed
model with a spatial resolution of 10" when changing the room size, the location of the microphone array and
the distance between the source and the center of the array. The average localization accuracy for each of the
two models is calculated, and then the improvement rate in localization accuracy is calculated.

Localization accuracy of SI-CNN model and proposed model when changing the configuration settings

y'd'Tni;‘S"’” SI-CNN (%) | Proposed (%) distcaizfzm) SI-CNN (%) | Proposed (%) distS;n“crgim) SI-CNN (%) |Proposed (%)

4 90 100 0 100 100 2.1 100 100
4,84 80 100 0,49 70 100 2,22 90 90
5,68 90 100 0,98 100 100 2,34 70 100
6,53 60 100 147 80 100 2,46 80 100
7,37 70 100 1,95 90 100 2,58 60 100
8,21 80 100 2,44 80 100 2,71 80 100
9,05 90 100 2,93 90 100 2,83 80 100
9,89 100 90 3,42 100 100 2,95 70 100
10,74 90 100 3,01 90 100 3,07 90 100
11,58 60 100 4.4 80 100 3,19 90 100
12,42 90 100 4,89 80 100 3,31 60 100
13,26 90 100 5,37 90 100 343 80 100
14,11 80 100 5,86 90 100 3,55 80 90
14,95 90 100 6,35 60 100 3,67 60 100
15,79 90 100 6,84 80 100 3,79 70 100
16,63 50 100 7,33 100 100 3,92 70 100
17,47 70 100 7,82 100 100 4,04 50 100
18,32 70 100 8,31 100 100 416 90 100
19,16 100 100 8,8 80 100 4,28 60 100
20 90 100 9,28 70 100 4.4 70 100
Average 81,5 99,5 Average 86,5 100 Average 75 99

The simulation results shown in the table demonstrate that the proposed model is highly effective in its
generalization ability and outperforms the SI-CNN model, achieving an improvement rate of 22,1%
in localization accuracy when changing the room size, 15,6% when changing the location of the microphone
array, and 32% when changing the distance between the source and the center of the microphone array.
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Conclusion

The generalizability of both the proposed model in [14] and the SI-CNN model based on the feeding
of SI features into CNN was evaluated when changing the configuration settings. The simulation results
demonstrated that the proposed model is highly effective and outperforms the SI-CNN model, and also
achieves better performance in generalization ability when changing settings, especially the distance between
the source and the center of the array. An improvement rate in localization accuracy was achieved by 22,1%
when changing the size of the room, by 15,6% when changing the location of the microphone array and
by 32% when changing the distance between the source and the center of the microphone array.

Finally, after the effectiveness of the proposed model in generalization has been proven, future work
will be to extend the proposed model to be able to localize multiple sound sources. This can be achieved
through integration between the proposed model and a model for separating multiple sound sources, where
a method will be applied to separate the sound sources, and then the proposed model will be applied to each
source to estimate its direction.
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