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Аннотация. Рассматривается вопрос о существовании левоинвариантных кэлеровых 

и полупаракэлеровых структур на шестимерных неразрешимых группах Ли, алгебры 

Ли которых являются полупрямыми произведениями. В соответствии с классифика-

ционными результатами существует четыре таких алгебры Ли. Показано, что одна 

из указанных четырех групп Ли допускает левоинвариантные кэлеровы метрики,  

а остальные три допускают левоинвариантные полупаракэлеровы и полукэлеровы 

структуры. 
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Abstract. It is well known that semisimple Lie groups do not admit left-invariant symplectic 

structures, and if a four-dimensional Lie group admits a left-invariant symplectic structure, 

then it must be solvable. In the six-dimensional case, this is not the case; there exist six-

dimensional symplectic unsolvable Lie algebras. An example of such a Lie algebra was 

given by Chu B.-Y. in 1974. Chu also showed that if the Lie algebra of a Lie group has  
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a Levi–Maltsev decomposition in the form of a direct product, then there are no symplectic 

structures on such a Lie group. Thus, the question remains about the existence of left-

invariant symplectic structures only on such Lie groups for which the Levi–Maltsev de-

composition of the corresponding Lie algebras is a semidirect product. It is known that 

there are four classes of such Lie algebras. This paper studies questions about the existence 

of various left-invariant geometric structures on four six-dimensional insoluble Lie groups 

whose Lie algebras are semidirect products. It is shown that left-invariant symplectic struc-

tures and even Kähler structures with Einstein pseudo-Riemannian metrics exist only on one 

of these Lie groups. This is a Lie group with a Lie algebra defined by nonzero Lie brackets: 

[e1, e2] = e2, [e1, e3] = e3, [e4, e5] = 2e5, [e4, e6] = −2e6, [e5, e6] = e4, [e2, e4] = e2, [e2, e5] = e3, 

[e3, e4] =−e3, [e3, e6] = e2. Thus, a six-dimensional symplectic Lie algebra must be solvable 

except in one case. The remaining three Lie groups admit left-invariant semi-para-Kähler 

and semi-Kähler structures with integrable complex or paracomplex structures. 

Keywords: six-dimensional unsolvable Lie groups, six-dimensional unsolvable Lie algebras, 

left-invariant Kähler structures, left-invariant semi-para-Kähler structures 
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1. Введение 
 

Левоинвариантные структуры на группе Ли определяются своими значениями 

на алгебре Ли. Поэтому при их исследовании обычно имеют дело со структурами 

на алгебре Ли группы Ли. В этом смысле мы будем говорить далее, например,  

о симплектической, или кэлеровой, алгебре Ли, имея в виду левоинвариантную 

симплектическую, или кэлерову, структуру на соответствующей группе Ли.  

Хорошо известно, что разрешимые алгебры Ли могут допускать симплектиче-

ские структуры [1, 2]. В работе B.-Y. Chu [3] показано, что четырехмерная сим-

плектическая алгебра Ли обязана быть разрешимой. В шестимерном случае это не 

так, и Chu [3] привел пример шестимерной симплектической, но неразрешимой 

алгебры Ли. В этой же работе показано, что полупростые алгебры Ли не могут быть 

симплектическими. Если алгебра Ли g неразрешима, то она имеет разложение Леви–

Мальцева g = N ⊕ S в виде прямой суммы радикала N и разрешимой подалгебры 

S. В работе [3] показано, если алгебра Ли g имеет разложение Леви–Мальцева  

в виде прямого произведения g = N × S, тогда на ней не существует симплектиче-

ских структур. Таким образом, остается вопрос о существовании симплектических 

структур только на неразрешимых шестимерных алгебрах Ли, для которых разло-

жение Леви–Мальцева является полупрямым произведением g = N ⋉ S. Согласно 

классификации шестимерных неразрешимых алгебры Ли [4, 5], которые являются 

полупрямыми произведениями, существует четыре класса таких алгебр Ли.  

Пусть (следуя обозначениям работы [4]) A3.1, A3.3, A3.5 – трехмерные разреши-

мые алгебры Ли с базисом {e1, e2, e3} и со следующими ненулевыми скобками Ли: 

A3.1 – коммутативная алгебра; A3.3: [e1, e2] = e3; A3.5: [e1, e2] = e2, [e1, e3] = e3. Таким 

образом, A3.1 = R3, A3.3 – это трехмерная алгебра Гейзенберга h3, A3.5 – трехмерная 

разрешимая и не унимодулярная алгебра Ли. Пусть so(3) – алгебра Ли группы ор-

тогональных матриц и sl(2,R) – алгебра Ли матриц порядка 2 с нулевым следом. 

На данных алгебрах Ли выберем обычный базис {e4, e5, e6}. Как известно [4, 5], 
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существует четыре шестимерных неразрешимых алгебры Ли, которые являются 

полупрямыми произведениями. Они определяются следующими скобками Ли: 

1. A3.5 ⋉ sl(2,R): [e1, e2] = e2, [e1, e3] = e3, [e4, e5] = 2e5, [e4, e6] = −2e6, [e5, e6] = e4,  

[e2, e4] = e2, [e2, e5] = e3, [e3, e4] = −e3, [e3, e6] = e2. 

2. A3.3 ⋉ sl(2,R): [e1, e2] = e3, [e4, e5] = 2e5, [e4, e6] = −2e6, [e5, e6] = e4, [e4, e1] = e1, 

[e5, e2] = e1, [e6, e1] = e2, [e4, e2] = −e2. 

3. A3.1 ⋉ sl(2,R): [e4, e5] = 2e5, [e4, e6] = −2e6, [e5, e6] = e4, [e4, e1] = 2e1, [e5, e2] = 2e1, 

[e6, e1] = e2, [e4, e3] = −2e3, [e5, e3] = e2, [e6, e2] = 2e3. 

4. A3.1 ⋉ so(3): [e4, e5] = e6, [e4, e6] = −e5, [e5, e6] = e4, [e4, e2] = e3, [e5, e1] = −e3,  

[e6, e1] = e2, [e4, e3] = −e2, [e5, e3] = e1, [e6, e2] = −e1. 

Пусть G1, G2, G3 и G4 – группы Ли, соответствующие алгебрам Ли указанного 

списка. Вопрос о левоинвариантных симплектических структурах на данных груп-

пах Ли (о симплектических структурах алгебрах Ли) рассмотрен в работе авто-

ров [6]. Показано, что только одна из четырех алгебр Ли допускает симплектические 

структуры. Таким образом, результат Chu относительно шестимерных неразреши-

мых алгебр Ли может быть уточнен следующим образом: шестимерная симплек-

тическая алгебра Ли обязана быть разрешимой за исключением одного случая 

A3.5 ⋉ sl(2,R). Поэтому эта исключительная неразрешимая симплектическая ал-

гебра Ли A3.5 ⋉ sl(2,R) заслуживает более глубокого изучения. 

Данная работа является продолжением работы [6]. Мы рассмотрим вопросы  

о существовании левоинвариантных кэлеровых, полукэлеровых и полупаракэле-

ровых структур на указанных выше четырех шестимерных неразрешимых группах 

Ли. Будет показано, что только на одной из четырех групп Ли, а именно на G1, 

существуют кэлеровы структуры, и даже с эйнштейновыми псевдоримановыми 

метриками. На остальных трех группах Ли существуют левоинвариантные полу-

паракэлеровы и полукэлеровы структуры с интегрируемыми комплексными или 

паракомплексными структурами.  

 

2. Предварительные сведения 

 

Напомним основные понятия, используемые в данной работе. 

Почти комплексной структурой на 2n-мерном многообразии M называется 

поле J эндоморфизмов J: TM → TM такое, что J 2 = –Id. Почти комплексная струк-

тура J называется интегрируемой, если обращается в нуль тензор Нейенхейса, 

определенный равенством NJ(X, Y) = [JX, JY] – [X, Y] – J[JX, Y] – J[X, JY], для любых 

векторных полей X, Y на M. В этом случае J определяет на M структуру комплекс-

ного многообразия.  

Будем рассматривать левоинвариантные почти комплексные структуры на группе 

Ли G, которые задаются левоинвариантным полем эндоморфизмов J: TG → TG 

касательного расслоения TG. Поскольку такой тензор J определяется линейным 

оператором на алгебре Ли g = TeG, то мы будем говорить, что J – это инвариантная 

почти комплексная структура на алгебре Ли g. В этом случае условие интегриру-

емости J формулируется на уровне алгебры Ли: NJ(X, Y) = 0 для любых X, Y  g.  

В этом случае будем говорить, что J – это комплексная структура на алгебре Ли g. 

Левоинвариантная симплектическая структура ω на группе Ли G задается 2-фор-

мой максимального ранга на алгебре Ли g. Замкнутость формы ω эквивалентна 
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следующему условию на алгебре Ли: ω([X, Y], Z) – ω([X, Z], Y) + ω([Y, Z], X) = 0, 

∀X, Y, Z  g. В этом случае алгебру Ли g будем называть симплектической. 

Левоинвариантная (псевдо)кэлерова структура (ω, J, g) на группе Ли G образо-

вана тремя левоинвариантными тензорами: симплектической формой ω, комплекс-

ной структурой J, согласованной с формой ω: ω(JX, JY) = ω(X, Y) и (псевдо)рима-

новой метрикой g, определенной формулой g(X, Y) = ω(X, JY). Поскольку ω, J и g 

определяются своими значениями на алгебре Ли, то будем говорить, что (ω, J, g) – 

(псевдо)кэлерова структура на алгебре Ли g. 

Почти паракомплексной структурой на 2n-мерном многообразии M называется 

поле P эндоморфизмов касательного расслоения TM таких, что P2 = Id, причем 

ранги собственных распределений T±M: = ker(Id ∓ P) равны. Почти паракомплекс-

ная структура P называется интегрируемой, если распределения T±M инволю-

тивны. В этом случае P называется паракомплексной структурой. Тензор Нийен-

хейса N почти паракомплексной структуры J определяется равенством NP(X, Y) =  

= [X, Y] + [PX, PY] – P[PX, Y] – P[X, PY], для любых векторных полей X, Y на M. 

Как и в комплексном случае, паракомплексная структура P интегрируема тогда и 

только тогда, когда NP(X, Y) = 0. Обзор теории паракомплексных структур пред-

ставлен в работе [7].  

Мы будем рассматривать левоинвариантные (почти) паракомплексные струк-

туры на группе Ли G, которые задаются левоинвариантным полем эндоморфизмов 

P: TG → TG касательного расслоения TG. Поскольку такой тензор P определяется 

линейным оператором на алгебре Ли g, то мы будем говорить, что P – инвариант-

ная почти паракомплексная структура на алгебре Ли g. В этом случае условие  

интегрируемости P также формулируется на уровне алгебры Ли: NP(X, Y ) = 0 для 

любых X, Y  g. Из условия интегрируемости P следует, что собственные подпро-

странства g+ и g– оператора P на алгебре Ли g являются подалгебрами. Поэтому 

инвариантная почти паракомплексная структура на алгебре Ли g интегрируема то-

гда и только тогда, когда алгебра Ли g может быть представлена в виде прямой 

суммы двух подалгебр: 

g = g+  g–. 

Паракэлерова структура на алгебре Ли g – это тройка (ω, P, g), состоящая из 

симплектической формы ω, паракомплексной структуры P, согласованной с фор-

мой ω: ω(PX, PY) = –ω(X, Y), и (псевдо)римановой метрики g, определенной фор-

мулой g(X, Y) = ω(X, PY).  

На последних трех алгебрах Ли представленного во введении списка нет замкну-

тых невырожденных 2-форм. Условие dω = 0 приводит к вырожденности формы ω. 

В то же время d(ω3) = 3ω ∧ ω ∧ dω = 0 для любой 2-формы ω на шестимерном мно-

гообразии. Промежуточным свойством будет следующее: d(ω2) = 2ω ∧ dω = 0. По-

этому мы ослабим свойство замкнутости и потребуем, чтобы выполнялось свойство 

ω ∧ dω = 0. 

Последнее условие хорошо известно. В случае почти эрмитовых групп Ли 

размерности 2n свойство d(ωn−1) = 0 фундаментальной формы ω определяет класс 

полукэлеровых групп Ли по классификации Грея–Харвеллы [8], т.е. таких, что 

δω = 0.  

В нашем случае псевдоэрмитовых метрик мы будем по аналогии называть та-

кие многообразия полукэлеровыми. 
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Определение 1. Левоинвариантная почти эрмитова (почти параэрмитова) 

структура (G2n, g, ω, J) на группе Ли, фундаментальная форма ω которой обла-

дает свойством d(ωn−1) = 0, называется полукэлеровой (полупаракэлеровой).  

На алгебрах Ли A3.3 ⋉ sl(2,R), A3.1 ⋉ sl(2,R) и A3.1 ⋉ so(3) нет симплектических 

форм. Для невырожденной 2-формы ω ее внешний дифференциал dω не равен 

нулю. При этом он может быть невырожденным как 3-форма. Понятие невырож-

денности (стабильности) для 3-формы Ω на шестимерном пространстве опреде-

лено в работе Хитчина [9]. Для 3-формы Ω Хитчин построил линейный оператор 

KΩ, квадрат которого пропорционален тождественному оператору Id. Напомним 

основные конструкции Хитчина. 

Пусть V – шестимерное вещественное векторное пространство, и µ – форма 

объема на V. Пусть Ω  Λ3V∗ и X ∈ V, тогда ιXΩ  Λ2V∗ и ιXΩ∧Ω  Λ5V∗. Естествен-

ное спаривание внешним произведением V∗⊗Λ5V∗ → Λ6V∗  Rµ определяет изомор-

физм A: Λ5V∗  V, и, используя это, Хитчин определил линейное преобразование 

KΩ: V → V следующей формулой: 

KΩ(X) = A(ιXΩ ∧ Ω). 

Другими словами, ιKΩ(X)µ = ιXΩ ∧ Ω. Оператор KΩ обладает свойствами: 

trace(KΩ) = 0 и K
2 = ()I. Если () ≠ 0, то 3-форма Ω называется невырожден-

ной. Если λ(Ω) < 0, то получается структура JΩ комплексного векторного про-

странства на пространстве V: 

( )

1
J K =

− 
, 

а если λ(Ω) > 0, то получаем паракомплексную структуру PΩ, т.е., PΩ
2 = Id, PΩ  1 

по аналогичной формуле 

( )

1
P K =

 
. 

Таким образом, если внешний дифференциал dω невырожденный, то оператор 

Kdω может определять либо почти комплексную, либо почти паракомплексную 

структуру на алгебре Ли g. 

Пусть  – связность Леви-Чивита, соответствующая (псевдо)римановой мет-

рике g. Она определяется из обычной шестичленной формулы, которая для лево-

инвариантных векторных полей X, Y, Z на группе Ли принимает вид: 2g(XY, Z) =  

= g([X, Y], Z) + g([Z, X], Y) + g(X, [Z, Y]). Тензор кривизны определяется формулой 

R(X, Y) = [X, Y] – [X,Y]. Тензор Риччи Ric(X, Y) определяется как свертка тензора 

кривизны по первому и четвертому (верхнему) индексам. Оператор Риччи опреде-

ляется формулой Ric(X, Y) = g(RIC(X), Y). Для вычислений геометрических харак-

теристик использовалась система Maple. 
 

3. Левоинвариантные структуры на неразрешимых группах Ли 
 

В данном разделе мы рассмотрим левоинвариантные геометрические струк-

туры на каждой из четырех шестимерных неразрешимых групп Ли, алгебры Ли 

которых являются полупрямыми произведениями. Напомним, что левоинвариант-

ные геометрические структуры на группе Ли определяются своими значениями на 

алгебре Ли, поэтому при их исследовании обычно используется только алгебра Ли 
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группы Ли. В этом смысле мы будем говорить, например, о симплектической, или 

кэлеровой, алгебре Ли, имея в виду левоинвариантную симплектическую, или кэ-

лерову, структуру на соответствующей группе Ли.  

3.1. Левоинвариантные кэлеровы структуры на группе G1. Группа G1 имеет 

алгебру Ли A3.5 ⋉ sl(2,R). Данную алгебру Ли приводит Chu [3] в качестве примера, 

показывающего, что шестимерная симплектическая алгебра Ли не обязана быть 

разрешимой. Она состоит из матриц вида: 

1 2 3

4 5

6 4

0 .

0

a a a

a a

a a

 
 
 

− 

 

Общий вид симплектической 2-формы на данной алгебре Ли получен в работе [6]: 

 

12 13

12 12 13

13 13 12

12 13 45 46

13 45 56

12 46 56

0 0 0 0

0 0 0

0 0 0

0 0

0 0 0

0 0 0

  
 −  
 
− −   =

−    
 − − 
 − − − 

 

(1) 

с условием невырожденности  
4 2 3 2 2 2 2 2 3 4 2

12 45 12 13 45 56 12 13 45 46 12 13 56 12 13 46 56 13 46det( ) 4 2 4 4 0. =   −     +     +    −     +    

Практически невозможно найти комплексную структуру в общем виде, согла-

сованную с данной формой. Поэтому мы будем использовать частные случаи, ко-

гда симплектическая 2-форма имеет наиболее простой вид.  

Случай 1. Указанному выше семейству принадлежит симплектическая струк-

тура 

 ω1 = e1 ∧ e2 + e2 ∧ e4 + e3 ∧ e6 – e4 ∧ e5, (2) 

приведенная в работе Chu [3].           

Найдем комплексные структуры J, согласованные с формой (2). Для этого мы 

берем матрицу почти комплексной структуры J = (ij) и решаем ряд условий:  

J2 = −Id, условие согласованности ω1(JX, JY) = ω1(X, Y) и условие интегрируемости 

NJ(X,Y) = [JX, JY] – [X, Y] – J[X, JY] – J[JX, Y] = 0. Получается следующая система 

уравнений для нахождения согласованной комплексной структуры J: 

 

,

0,

0,

ii k

k j j

k k

i jkj ik

k l m kl m m k l k

i j j l i mlm im lj ij

J J

J J

C C C CJ J J J J J

 = −


 + =
 − − − =  

(3) 

где k

ijC  – структурные константы алгебры Ли. 

Данная система алгебраических уравнений решается с использованием символь-

ных вычислений Maple. Сначала решаем самое простое условие согласованности, 

затем – условие интегрируемости, и в заключение проверяется условие J2 = –Id.  

Для алгебры Ли A3.5 ⋉ sl(2,R) получается шесть решений условий (3). Для каж-

дого случая определяем ассоциированную псевдориманову метрику формулой 

gJ(X, Y) = ω1(X, JY). В результате каждое решение представляет кэлерову структуру 

(ω1, J, gJ). Причем среди них есть одна кэлерова структура (ω1, J1, g1) с эйнштей-

новой метрикой g1 скалярной кривизны S = 12. Такая комплексная структура и 

метрический тензор представлены следующими матрицами: 
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1 1

1
1 0 0 1 0 00 1 0 0 1

4 0 1 0 0 0 0
1 0 0 1 0 0

1
0 0 0 0 1 0 0 0 1 0 0

4,1
1 0 1 1 0 00 0 0 0 1

4 1
0 0 1 0 0 0 0 0 0 0 1

41
0 0 0 0 1 00 0 1 0 0

4

gJ

 
−− −   
 − 

−   
  
 = = 
 −− − 
  

− − −  
    −   

 

  (4) 

Случай 2. Указанному выше семейству симплектических форм (1) также при-

надлежит следующая симплектическая структура: 

 ω2 = e1 ∧ e3 + e2 ∧ e5 – e3 ∧ e4 + e4 ∧ e6.  (5) 

Вычисления показывают, что существует пять семейств комплексных структур J, 

согласованных с формой (5). Каждое решение представляет кэлерову структуру 

(ω2, J, gJ). Причем среди них есть одна кэлерова структура (ω2, J2, g2) с эйнштей-

новой метрикой g2 ненулевой скалярной кривизны S = –12a, зависящей от одного 

параметра. Такая комплексная структура и метрический тензор представлены сле-

дующими матрицами: 

 

3

2 2

3

1 1 1
0 0 0 0 0 0 0

4
1

0 0 0 0 0 0 0 0 0
4

1 1 0 0 0 0 0
0 0 0 0

, 1 1
0 0 0

1
0 0 0 0

14
0 0 0 0 0

0 0 0 0
14 0 0 0 0

0 0 0 0 0 4

a
a

a a a
a

a
a

a
gJ a a

a
a a a

a
a aa

a

a a

   
−   

   
   − −
   
   
   = =
   
   − −
   
   

−   
   
   

 (6) 

Параэрмитова структура. На алгебре Ли A3.5 ⋉ sl(2,R) имеется (интегрируемая) 

паракомплексная структура P0, соответствующая полупрямому произведению подал-

гебр g = A3.5 ⋉ sl(2,R). Она имеет диагональную матрицу P0 = diag{1, 1, 1, –1, –1, –1}. 

Кроме того, на алгебре Ли A3.5 ⋉ sl(2,R) имеется 2-форма Ω0 = e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6, 

также соответствующая разложению в полупрямое произведение (здесь e1, …, e6 – 

дуальный базис). Однако форма Ω0 не является полукэлеровой. Поэтому на ал-

гебре Ли A3.5 ⋉ sl(2,R) определена параэрмитова структура (Ω0, P0, g0), где псевдо-

риманова метрика g0 определяется равенством g0(X, Y) = Ω0(X, P0Y). Эта метрика 

имеет тензор Риччи вида: 

1 1 5 5 6 6 2 5 3 6 4 3 5 61 1
2 2 2 5

2 2
Ric e e e e e e e e e e e e e e= −  −  −  −  +  −  −   

и нулевую скалярную кривизну. Напомним, что 
1

( )
2

i j i j i je e e e e e =  +   – сим-

метричное произведение. 

Полученные результаты сформулируем в виде теоремы.  
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Теорема 1. Группа Ли G1 с алгеброй Ли A3.5 ⋉ sl(2,R) допускает многопарамет-

рическое семейство левоинвариантных симплектических структур (1). Группа G1 

допускает левоинвариантные кэлеровы структуры, в том числе и такие, кото-

рые имеют эйнштейновы метрики (4) и (6). Группа G1 имеет также естествен-

ную левоинвариантную параэрмитову структуру нулевой скалярной кривизны. 

3.2. Левоинвариантные полупаракэлеровы структуры на группе G2. Груп-

па G2 имеет алгебру Ли A3.3 ⋉sl(2,R). На данной алгебре Ли нет левоинвариантных 

симплектических структур, из условия замкнутости dω = 0 следует вырожденность 

2-формы ω. Это легко показать. Пусть ω = ωijei ∧ ej – произвольная 2-форма. Ком-

поненты внешнего дифференциала имеют следующие выражения через структур-

ные константы 
k

ijC :   

.s s s

ijk ij sk ik sj jk sid C C C = −  +  −   

Из условия 0ijkd =  имеем, в частности, 
134 13 4 14 3 34 1 0.s s s

s s sd C C C = −  +  −  =  
 

Из коммутационных соотношений [e1, e2] = e3, [e4, e5] = 2e5, [e4, e6] = –2e6, [e5, e6] = e4, 

[e4, e1] = e1, [e5, e2] = e1, [e6, e1] = e2, [e4, e2] = –e2 получаем 
13 0,sC =  

34 0sC =
 
и 

14 1.sC = −  

Поэтому имеем dω134 = –ω13 = 0. Совершенно аналогично получаются следующие 

равенства: ω13 = 0, ω23 = 0, ω34 = 0, ω35 = 0, ω36 = 0, из которых следует вырожден-

ность формы ω. 

Полупаракэлерова структура, соответствующая полупрямому произведе-

нию. На данной алгебре Ли имеется паракомплексная структура P0, соответству-

ющая полупрямому произведению подалгебр: g = A3.3 ⋉ sl(2,R). Она имеет диаго-

нальную матрицу P0 = diag{1, 1, 1, –1, –1, –1}.  

Кроме того, на алгебре Ли A3.3 ⋉ sl(2,R) имеется естественная 2-форма  

Ω = ae1 ∧ e4 + be2 ∧ e5 + ce3 ∧ e6, также соответствующая полупрямому произведе-

нию. Легко видеть, что она согласована с оператором P0 и является полукэлеровой 

при условии a = –b. Выберем две наиболее простые полукэлеровы формы  

 Ω01 = – e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6  и  Ω02 = e1 ∧ e4 – e2 ∧ e5 + e3 ∧ e6.  (7) 

Таким образом, на алгебре Ли A3.3 ⋉ sl(2,R) определены две полупаракэлеровых 

структуры (Ω0i, P0, g0i), i = 1, 2, псевдоримановы метрики которых g0i(X, Y) = Ω0i(X, P0Y) 

имеют нулевые скалярные кривизны и тензоры Риччи вида: 

Ric1 = – 4e2 ∙ e4 – 4e4 ∙ e4 – 8e5 ∙ e6, 

Ric2 = 4e2 ∙ e4 – 4e4 ∙ e4 – 8e5 ∙ e6. 

Обе формы Ω0i имеют вырожденные в смысле Хитчина внешние дифференциалы.  

Общие полупаракэлеровы структуры. На алгебре Ли не существует замкну-

тых невырожденных 2-форм. Поэтому будем рассматривать полукэлеровы 2-формы, 

т.е. невырожденные формы ω, удовлетворяющие условию полукэлеровости ω ∧ dω = 0. 

Пусть ω = ωijei∧ej – произвольная 2-форма. Условие ω ∧ dω = 0 выполняется при 

следующих значениях параметров: 

ω12ω35 – ω13ω25 + ω15ω23 = 0, ω12ω34 – ω13ω24 + ω14ω23 = 0,  

–ω12ω36 + ω13ω26 – ω16ω23 = 0,  

ω13ω46 – ω14ω36 + ω16ω34 + ω23ω56 – ω25ω36 + ω26ω35 = 0,  

–ω13ω56 + ω15ω36 – ω16ω35 – ω23ω45 + ω24ω35 – ω25ω34 = 0, 

–ω34ω56 + ω35ω46 – ω36ω45 = 0. 

При условии невырожденности ω существует 7 решений этой системы. Во всех 

случаях 3-форма dω является невырожденной в смысле Хитчина [9] и каждой 3-фор-
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ме dω соответствует оператор Pdω (неинтегрируемой) почти паракомплексной струк-

туры. Отметим, что выражения 2-форм ω и соответствующих операторов Pdω яв-

ляются весьма громоздкими. Поэтому рассмотрим только те полукэлеровы 2-формы 

с невырожденным dω, которые согласованы с паракомплексной структурой P0, т.е. 

такие, что ω(P0X, P0Y) = –ω(X, Y). Тогда получается три полукэлеровых 2-формы:  

 

( )

1 4 5 616 34 25 36 26 35 16 35 24 35 25 34

1 16

36 36

2 4 5 6 3 4 5 6

24 25 26 34 35 36( ) ,

e e e e

e e e e e e e e

   −  +    −  + 
 =  + + + 

  

+   + + +   + +

 (8) 

 

( )

1 4 5 6 2 4 524 35 25 34

2 14 15 24 25

35

6 3 4 524 35 25 34 34

34 352

35

(

( )
) ,

e e e e e e e

e e e e

   − 
 =   + + +   + − 

 
  −  

− + +   +


 (9)
 

 ( ) ( )1 4 5 2 4 6 3 4

3 14 15 24 26 34 .e e e e e e e e =   + +   + + 
 

(10) 

В каждом случае мы получаем полупаракэлерову структуру (ω, P0, gω) с ассо-

циированной метрикой gω(X, Y) = ω(X, P0Y). В системе Maple легко вычисляются 

геометрические характеристики метрики gω. В частности, для последней формы ω3 

метрический тензор и скалярная кривизна имеют вид: 

14 15

24 26

3434

14 24 34 15 26

15

26

0 0 0 0

0 0 0 0

0 0 0 0 0
, .

0 0 0

0 0 0 0 0

0 0 0 0 0

g S

− − 
 − −
 

− = =
− − −   
 −
 − 

 

Как уже отмечалось, каждая из указанных выше 2-форм имеет невырожденный 

в смысле Хитчина внешний дифференциал dω и, следовательно, оператор Pdω по-

чти паракомплексной структуры. Приведем выражение оператора Pdω, соответ-

ствующего 3-форме dω3: 

( ) ( ) ( )14 24

1 1 3 2 2 3 3 3

34 34

2 2
, , ,d d dP e e e P e e e P e e  

 
= − = − = −

   

( ) ( )
2

14 24 15 26 15 14 15 2414

4 3 4 5 1 2 3 52 2

34 3434 34

2 18 6 2 62
, ,d dP e e e P e e e e e 

  +     +  
= + = + − −

    

( )
2

26 24 14 2624

6 1 2 3 62

34 34 34

6 2 62
.dP e e e e e

  −  
= − + −

  
 

Полученные результаты сформулируем в виде теоремы. 

Теорема 2. Группа G2 с алгеброй Ли A3.3 ⋉ sl(2,R) не допускает левоинвариант-

ных симплектических структур. Группа G2 имеет естественные левоинвариант-

ные полупаракэлеровы структуры (Ω0i, P0, g0i), i = 1, 2, отрицательной скалярной 

кривизны, где полукэлеровы 2-формы Ω0i представлены формулами (7), 

P0 = diag{1, 1, 1, –1, –1, –1} и g0i(X, Y) =Ω0i(X, P0Y). Группа G2 допускает также 

многопараметрические семейства (8)–(10) левоинвариантных полукэлеровых  

2-форм ω, согласованных с оператором паракомплексной структуры P0, и, 



Математика / Mathematics 

26 

следовательно, она допускает многопараметрические семейства полупаракэле-

ровых структур (ω, P0, gω) с ассоциированными метриками gω(X, Y) = ω(X, P0Y). 

3.3. Левоинвариантные полупаракэлеровы структуры на группе G3. Груп-

па G3 имеет алгебру Ли A3.1 ⋉ sl(2,R). На данной алгебре Ли нет левоинвариантных 

симплектических структур, из условия замкнутости dω = 0 следует вырожденность 

2-формы ω. Это показывается так же просто, как и в предыдущем разделе. 

Полупаракэлерова структура, соответствующая полупрямому произведе-

нию. На данной алгебре Ли имеется паракомплексная структура P0, соответству-

ющая полупрямому произведению подалгебр A3.1 и sl(2,R). Она имеет диагональ-

ную матрицу P0 = diag{1, 1, 1, –1, –1, –1}.   

Кроме того, алгебре Ли A3.1 ⋉ sl(2,R) имеется естественная 2-форма Ω = ae1 ∧ e4 +  

+ be2 ∧ e5 + ce3 ∧ e6, соответствующая полупрямому произведению. Легко видеть, 

что она согласована с оператором P0 и является полукэлеровой при условии a = –b. 

Выберем две наиболее простые полукэлеровы формы 

Ω01 = –e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6   и   Ω02 = e1 ∧ e4 – e2 ∧ e5 + e3 ∧ e6, 

соответствующие разложению алгебры в полупрямое произведение. Легко видеть, 

что обе они являются полукэлеровыми и согласованы с оператором P0. Поэтому 

на алгебре Ли A3.1 ⋉ sl(2,R) определены две полупаракэлеровых структуры  

(Ω0i, P0, g0i), i = 1, 2, псевдоримановы метрики которых g0i(X, Y) = Ω0i(X, P0Y) имеют 

нулевую скалярную кривизну и тензор Риччи вида:  

Rici = –16e4 ∙ e4 – 16e5 ∙ e6. 

Обе формы Ω0i имеют вырожденные в смысле Хитчина внешние дифферен-

циалы. 

Общие полупаракэлеровы структуры. На алгебре Ли не существует зам-

кнутых невырожденных 2-форм. Пусть ω = ωijei ∧ ej – произвольная 2-форма. 

Условие полукэлеровости ω ∧ dω = 0 выполняется при следующих значениях па-

раметров: 

2ω12ω35 – 2ω13ω25 + 2ω15ω23 = 0, ω12ω34 – ω13ω24 + ω14ω23 = 0, 

–2ω12ω56 – 2ω13ω45 + 2ω14ω35 + 2ω15ω26 – 2ω15ω34 – 2ω16ω25 = 0, 

2ω13ω46 – 2ω14ω36 + 2ω16ω34 + 2ω23ω56 – 2ω25ω36 + 2ω26ω35 = 0, 

ω12ω46 – ω14ω26 + ω16ω24 – ω23ω45 + ω24ω35 – ω25ω34 = 0, 

–2ω12ω36 + 2ω13ω26 – 2ω16ω23 = 0. 

Существует 2 решения этой системы при условии невырожденности ω:  

ω1 = e1 ∧ (–ω25e4 + ω15e5 – ω35e6) + e2 ∧ (ω24e4 + ω25e5 + ω26e6) +  

+ e3 ∧ (ω26e4 + ω35e5 – ω36e6) + e4 ∧ (ω45e5 + ω46e6) + e5 ∧ ω56e6, 

ω2 = e1 ∧ (ω14e4 + ω15e5 – ω35e6) + e2 ∧ (ω24e4 – ω14e5 + ω34e6) +  

+ e3 ∧ (ω34e4 + ω35e5) + e4 ∧ (ω45e5 + ω46e6) + e5 ∧ ω56e6. 

Обе этих формы имеют вырожденный внешний дифференциал. 

На алгебре Ли A3.1 ⋉ sl(2,R) имеется интегрируемая паракомплексная структура 

P0 = diag{1, 1, 1, –1, –1, –1}, соответствующая разложению алгебры Ли в полупрямое 

произведение. Потребуем выполнения свойства согласованности ω(P0X, P0Y) = –ω(X, Y). 

Тогда указанные выше полукэлеровы 2-формы принимают вид: 

ω1 = e1 ∧ (–ω25e4 + ω15e5 – ω35e6) + e2 ∧ (ω24e4 + ω25e5 + ω26e6) +  

 + e3 ∧ (ω26e4 + ω35e5 – ω36e6), (11) 

ω2 = e1 ∧ (ω14e4 + ω15e5 – ω35e6) + e2 ∧ (ω24e4 – ω14e5 + ω34e6) +  

 e3 ∧ (ω34e4 + ω35e5). (12) 
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Определим ассоциированную метрику по формуле ( ) ( )0, , ,
i ig X Y X PY =   1,2.i =  

Вычисления показывают, что каждая полупаракэлерова структура ( )0, ,
ii P g  имеет 

нулевую скалярную кривизну. 

Полученные результаты сформулируем в виде теоремы. 

Теорема 3. Группа G3 с алгеброй Ли A3.1 ⋉ sl(2,R) не допускает левоинвариантных 

симплектических структур. Группа G3 имеет естественные левоинвариантные 

полупаракэлеровы структуры (Ω0i, P0, g0i), i = 1, 2, нулевой скалярной кривизны, где 

полукэлеровы 2-формы Ω0i представлены формулами (7), P0 = diag{1, 1, 1, –1, –1, –1} 

и g0i(X, Y) = Ω0i(X, P0Y). Группа G3 допускает также многопараметрические семей-

ства (11)–(12) левоинвариантных полукэлеровых 2-форм ω, согласованных с опера-

тором паракомплексной структуры P0, и, следовательно, она допускает многопара-

метрические семейства левоинвариантных полупаракэлеровых структур (ω, P0, gω)  

с ассоциированными метриками gω(X, Y) = ω(X, P0Y) нулевой скалярной кривизны. 

3.4. Левоинвариантные полукэлеровы и полупаракэлеровы структуры на 

группе G4. Группе G4 имеет алгебру Ли A3.1 ⋉ so(3). На данной алгебре Ли имеется 

паракомплексная структура P0, соответствующая полупрямому произведению под-

алгебр A3.1 и so(3). Она имеет диагональную матрицу P0 = diag{1, 1, 1, –1, –1, –1}. 

Кроме того, на алгебре Ли A3.1 ⋉ so(3,R) имеется естественная 2-форма Ω = ae1 ∧ e4 +  

+ be2 ∧ e5 + ce3 ∧ e6, соответствующая полупрямому произведению. Легко видеть, 

что она согласована с оператором P0 и является полукэлеровой при любых нену-

левых значениях параметров a, b, c.  

Поэтому на алгебре Ли A3.1 ⋉ so(3) определена полупаракэлерова структура  

(Ω, P0, g), псевдориманова метрика которой g(X, Y) = Ω(X, P0Y) имеет тензор Риччи 

вида 
( ) ( ) ( )

2 2 22 2 2

4 4 5 5 6 6
a b c b a c c a b

Ric e e e e e e
bc ab ac

− − + − − −
=  −  +  , и нулевую 

скалярную кривизну. 

Общие полупаракэлеровы структуры. Пусть ω = ωijei ∧ ej – произвольная  

2-форма. Вычисления показывают, что 3-форма dω является вырожденной. Условие 

полукэлеровости ω ∧ dω = 0 выполняется при следующих значениях параметров: 

–ω13ω56 + ω15ω36 – ω16ω35 + ω23ω46 – ω24ω36 + ω26ω34 = 0, 

ω12ω36 – ω13ω26 + ω16ω23 = 0, ω12ω34 – ω13ω24 + ω14ω23 = 0, 

ω12ω56 – ω15ω26 + ω16ω25 – ω23ω45 + ω24ω35 – ω25ω34 = 0, 

–ω12ω46 + ω13ω45 + ω14ω26 – ω14ω35 + ω15ω34 – ω16ω24 = 0, 

–ω12ω35 + ω13ω25 – ω15ω23 = 0. 

Существует 2 решения этой системы с невырожденными формами ω:  

ω1 = e1 ∧ (ω14e4 + ω24e5 + ω34e6) + e2 ∧ (ω24e4 + ω25e5 + ω26e6) +  

+ e3 ∧ (ω34e4 + ω26e5 + ω36e6) + e4 ∧ (ω45e5 + ω46e6) + e5 ∧ ω56e6, 

ω2 = e1 ∧ (ω14e4 + ω15e5 + ω34e6) + e2 ∧ (ω15e4 + ω25e5 + ω35e6) +  

+ e3 ∧ (ω34e4 + ω35e5) + e4 ∧ (ω45e5 + ω46e6) + e5 ∧ ω56e6. 

На алгебре Ли A3.1 ⋉ so(3,R) имеется интегрируемая паракомплексная струк-

тура P0 = diag{1, 1, 1, –1, –1, –1}, соответствующая разложению алгебры Ли  

в полупрямое произведение. Потребуем выполнения свойства согласованности 

ω(P0X, P0Y) = –ω(X, Y). Тогда полукэлеровы 2-формы принимают вид: 

ω1 = e1 ∧ (ω14e4 + ω24e5 + ω34e6) + e2 ∧ (ω24e4 + ω25e5 + ω26e6) +  

 e3 ∧ (ω34e4 + ω26e5 + ω36e6),  (13) 
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ω2 = e1 ∧ (ω14e4 + ω15e5 + ω34e6) + e2 ∧ (ω15e4 + ω25e5 + ω35e6) +  

 e3 ∧ (ω34e4 + ω35e5). (14) 

Определим ассоциированную метрику ( ) ( )0, , , 1,2.
i ig X Y X PY i =  =

 
Вычис-

ления показывают, что каждая полупаракэлерова структура ( )0,
ii P g  имеет нуле-

вую скалярную кривизну. 

Полукэлеровы структуры. Данная алгебра Ли допускает интегрируемые ком-

плексные структуры J = (ψij), согласованные с паракэлеровой 2-формой  

 Ω01 = – e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6.  (15) 

При выполнении условия согласованности, ψ51 = –ψ42, ψ61 = –ψ43, ψ11 = –ψ44, 

ψ21 = ψ45, ψ31 = ψ46, ψ62 = ψ53, ψ12 = ψ54, ψ22 = –ψ55, ψ32 = –ψ56, ψ13 = ψ64, ψ23 = –ψ65, 

ψ33 = –ψ66, ψ24 = –ψ15, ψ34 = –ψ16, ψ35 = ψ26, решение двух других условий си-

стемы (3) дает 4 варианта, с точностью до знака (±J), значений параметров ψij 

матрицы J:  
2 2 2 2

45 46 45 45 46 46

15 16 25 26 36 42 43

41 45 41 41 41

46

44 52 53 54 55 56 64 65 66

45

2 2

45 46

14

41 45

1. 0, , , , , 0, 0,

, 0, 0, 0, 0, 1, 0, 1, 0,

;

 +    
 =  =  =  =  =  =  =

    


 = −  =  =  =  =  = −  =  =  =



 +
 = −

 

 

( ) ( ) 2
45 44 46 14 15 46 44 45 15 45

15 16 252

45 44 46 45 44 4644

2

15 45 46 15 45 45 44 46

26 36 41

45 44 46 45 44 46 15

42 43 52 53 54 55 56 63

64

2. , , ,
1

, , ,

0, 0, 0, 0, 0, 0, 1, 0,

0,

  +     −  
 =  =  = −

  +   + +

       +
 = −  = −  = −

  +   + 

 =  =  =  =  =  =  = −  =

 = 65 661, 0;=  =

 

2 2 2 2

16 41 46 46 46

14 15 25 26 36 42 43

41 46 41 41

16 41

44 45 52 53 54 55 56 63

46

64 65 66

3. , , 0, 0, , 0, 0,

, 0, 0, 0, 0, 0, 1, 0,

0, 1, 0;

  +  
 = −  =  =  =  =  =  =

   

 
 = −  =  =  =  =  =  =  =



 =  = −  =

 

2

44

14 15 16 25 26 36 42

41

43 45 46 52 53 54 55 56 63

64 65 66

1
4. , 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 1, 0.

 +
 = −  =  =  =  =  =  =



 =  =  =  =  =  =  =  = −  =

 =  =  =

 

Каждая из указанных комплексных структур J определяет полукэлерову струк-

туру (Ω01, J, gJ), где gJ(X, Y) = Ω01(X, JY).  

Приведем явные выражения четвертой по списку структуры: 
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4

2
41 4444

44

41

2

4 44

44

41 44 41

0 0 0 01
0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 00 0 1 0 0 0
1,0 1 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0

JgJ

− −    +
− −   −   

−   
 += =   

−     
   

−   
   −   

.

 

Тензор Риччи: 
2

41 41 44

41

41

4 2

41 44 44

41

41

0 0 0 0

0 0 0 0 0
2

0 0 0 0 0
2

0 0 0 0

0 0 0 2 0
2

0 0 0 0 2
2

Ric

 − − 
 
 
 

 
− 

=  
−  − 

 
− 

 
 
 

.

 Скалярная кривизна S = ψ41. 

Полученные результаты сформулируем в следующем виде. 

Теорема 4. Группа G4 с алгеброй Ли A3.1 ⋉ so(3) не допускает левоинвариант-

ных симплектических структур. Группа G4 имеет естественные левоинвариант-

ные полупаракэлеровы структуры (Ω, P0, g), нулевой скалярной кривизны, где  

Ω = ae1 ∧ e4 + be2 ∧ e5 + ce3 ∧ e6 и P0 = diag{1, 1, 1, –1, –1, –1}. Группа Ли G4 допус-

кает также многопараметрические семейства (13), (14) левоинвариантных полу-

кэлеровых 2-форм ω, согласованных с оператором паракомплексной структуры P0, 

и, следовательно, она допускает многопараметрические семейства левоинвари-

антных полупаракэлеровых структур (ω, P0, gω) с ассоциированными метриками 

gω(X, Y) = ω(X, P0Y) нулевой скалярной кривизны. Группа G4 допускает многопара-

метрические семейства левоинвариантных комплексных структур, согласованных 

с полукэлеровой 2-формой (15), и, следовательно, она допускает многопараметри-

ческие семейства левоинвариантных полукэлеровых структур (Ω01, J, gJ) с интегри-

руемыми комплексными структурами J и ассоциированными псевдоримановыми 

метриками gJ(X, Y) = Ω01(X, JY). 
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