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Аннотация. Представлен метод определения упругого состояния конечного транс-

версально-изотропного тела вращения в условиях стационарной динамической за-

дачи, когда на поверхность тела наложены кинематические условия, гармонические 

во времени. Метод решения заключается в разложении искомого упругого состоя-

ния в ряд Фурье по элементам ортонормированного базиса пространства граничных 

состояний. В качестве базисных элементов выступают частные решения простран-

ственной осесимметричной задачи теории упругости для трансверсально-изотроп-

ного тела. Приведено решение второй основной задачи для кругового трансвер-

сально-изотропного цилиндра. 
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Abstract. This paper presents a mathematical model for constructing elastic fields for 

transversely isotropic bodies of revolution under the conditions of the inverse problem  
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of elasticity, where the displacements prescribed on the body surface vary over time ac-

cording to a cyclic law. An axisymmetric disturbance propagates at a constant velocity 

along one of the elastic symmetry axes of the material. The boundary state method is used 

to solve the problem. Using the method of integral superposition, a relationship is estab-

lished between the spatial stress–strain state of the transversely isotropic elastic body and 

certain auxiliary two-dimensional states. The auxiliary states are constructed based on the 

general solution of the plane stationary dynamic problem. A set of such plane auxiliary 

states is generated, and a corresponding set of spatial states is obtained by applying the 

transformation formulas. This set forms a finite-dimensional basis of the internal states 

with the desired solution expanded after orthogonalization into a Fourier series with the 

same coefficients.  

The solution of the inverse dynamic problem of elasticity is presented for a transversely 

isotropic circular cylinder with the kinematic boundary conditions varying according  

to the cosine law. 

Keywords: method of boundary states, stationary isotropic problems, inverse problem  

of elasticity, transversely isotropic body, axisymmetric deformation 
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Введение 

 

Колебательные процессы в механике физических процессов встречаются до-

вольно часто. Если возмущение распространяется с постоянной скоростью, то речь 

идет о динамических задачах стационарного типа. Учет инерционных составляю-

щих в задаче по определению напряженно-деформированного состояния тела, 

находящегося под действием данных возмущений, усложняет ее решение, а если 

тело еще является и анизотропным, то важность иметь математическую модель 

построения упругих полей в стационарно-динамической задаче очевидна. 

Решению задач динамики для изотропных и анизотропных сред посвящено 

множество работ. Например, в работе [1] исследуются краевые динамические за-

дачи для трансверсально-изотропного упругого сферического слоя. С помощью 

вариационного принципа Гамильтона получены асимптотические разложения, 

позволяющие получить напряженно-деформированное состояние при различных 

значениях частоты возмущающей нагрузки. В работе [2] в рамках модели Тимо-

шенко решена стационарно-динамическая задача для кольцеобразной плоской об-

ласти. С помощью системы компьютерной алгебры определены частоты и формы 

собственных колебаний пластины при различных способах ее закрепления. В ра-

боте [3] с помощью численных преобразований получены граничные интегральные 

уравнения для решения различных краевых задач теории упругости для изотроп-

ных тел. В работе [4] рассмотрен вопрос применения трех упругих потенциалов 

для решения пространственных динамических задач для упругого полупростран-

ства. Интегральное преобразование Радона позволило перейти к плоской задаче  

в образах. В работе на основе этого решения исследовались волны Рэлея. Работа [5] 

посвящена построению квадратур для решения динамических задач теории упру-

гости со смешанными поверхностными условиями для ограниченных сред из ли-

нейно-однородного анизотропного материала. 
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Разнообразие методов решения задач динамики иллюстрируют следующие ра-

боты. В [6] обсуждалась возможность решения динамических задач теории упру-

гости в конечно-элементных технологиях. В работе сравнивалось три типа вариа-

ционных постановок: принцип Гамильтона, принцип Лагранжа и принцип возможных 

перемещений. Полученные уравнения в матричном виде описывают волновое дви-

жение конечно-элементной сетки и могут применяться при решении различных 

задач о распространении волны. В работе [7] показана численная реализация раз-

ностной схемы решения плоских динамических задач для областей сложной 

формы. В работе [8] представлен численно-аналитический метод решения неста-

ционарно-динамических контактных задач об ударе. Для решения двумерных инте-

гральных уравнений использовался метод последовательных приближений. В ра-

боте [9] решение задачи о движущейся нагрузке, приложенной к телам вращения, 

проводилось методом граничных интегральных уравнений. Рассмотрена плоская 

динамическая задача для сферической оболочки, нагруженной двумя подвижными 

сосредоточенными силами. В работе [10] исследовалась динамическая контактная 

задача с двумя деформируемыми штампами, лежащими на деформируемом осно-

вании. Исследование опирается на метод блочного элемента, позволяющего стро-

ить точные решения граничных задач для дифференциальных уравнений в част-

ных производных. 

 

1. Постановка задачи 

 

Исследуется осесимметричная динамическая деформация конечного тела вра-

щения из трансверсально-изотропного материала, ось анизотропии которого сов-

падает с осью вращения тела (рис. 1). 

В стационарной динамической задаче компоненты упругого поля (перемеще-

ния, деформации и напряжения) зависят от координат r, z и времени t. Заданными 

являются перемещения точек границы { , }u w=u , возмущения в которых распро-

страняются с постоянной скоростью с вдоль координаты z. Вводя подвижную ко-

ординату 0z z ct= − , можно исключить параметр t из определяющих уравнений, и 

компоненты упругого поля будут зависть только от двух переменных r и z0. 

 

Рис. 1. Анизотропное тело вращения 

Fig. 1. Anisotropic solid of revolution 
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Задача состоит в отыскании переменного во времени напряженно-деформиро-
ванного состояния. 

 

2. Определяющие соотношения 
 

В цилиндрической системе координат r, z0 в случае осевой симметрии между 

неравными нулю перемещениями u, w, деформациями r ,  , 
0z

 , 
0z r , напряже-

ниями r ,  , 
0z , 

0z r , а также между техническими 
0zE , rE , 

0z
 , r , rG , 

0zG  

константами материала тела имеют место следующие зависимости. 
Уравнения равновесия (объемные силы отсутствуют) [11]: 

 0

2

2

0

z r rr u

z r r t


  − 

+ + = 
  

; (1) 

0

2

2

0

1z w

z r t

 
  

+ = 
  

. 

Соотношения Коши [11]: 

 r

u

r


 =


; 

0

z

w

z


 =


; 

u

r
 = ; 

0

0

z r

w u

r z

 
 = +

 
; 01

cos
2 2

z
u

 
= −  

 
; 

0
0z  = . (2) 

Уравнения совместности деформаций [12]: 

2

2

1 1
( ) 0rr

r r r rr

 
− =

  
; 

 
0 0

1 1
( ) 0rr

r r z r z

 
− + =

  
; (3) 

0

2

2

00

1 2
0

z rz

r r r zz


 

+ − =
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; 

0 0

2 22

2 2

00

2 0
z z rr

r zz r

    
+ − =

  
. 

Обобщенный закон Гука [11]: 

0

0

0

1
( )

z

r r r z

r zE E


 
 =  −  −  

  

; 

 
0 0 0

0

1
( )z z z r

zE


  =  −  +   ; (4) 

0

0

0

1
( )

z

r r z

r zE E
 


 =  −  −  ; 

0 0

1
z r z r

zG
 =  . 

Дифференциальные уравнения равновесия в перемещениях [11]: 

 ( ) ( )
2 2 2

2

33 44 13 442 2

00

0
w w u

A c A A A
z rz r

  
− + + + =

  
; (5) 

( ) ( )
2 2 2

2

13 44 44 112 2

0 0

0
w u u

A A A c A
z r z r

  
+ + − + =

   
, 

где ρ – плотность материала; c – скорость распространения волны. 
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3. Общее решение задачи 

 

В работе [11] представлено общее решение пространственной краевой задачи 

статики в виде квадратур, ядра которых представляют собой некоторые плоские 

вспомогательные состояния 
0

{ , }pl pl pl

y zu u=u . Компоненты вектора перемещения 

этого решения имеют вид: 

0

0 2 2

1
plr
z

z

r

dy
r y−


 =

 −
 ; 0

0 2 2

1
plr
z y

z r

r

dy
r r y−


 =

 −
 ; 

0
0z r  =  = ; 

 

2 2

2 2 2

( )(2 )1
pl plr
y

r

r

y r
dy

r r y





−

 − −
 − =

 −
 ; 

2 2

( )1
pl plr
y

r

r

dy
r y





−

 + 
 +  =

 −
 ; (6) 

2 2

1
plr
y

r

u
u dy

r r y−

=
 −
 ; 0

2 2

1
plr
z

r

u
w dy

r r y−

=
 −
 ; 0v = . 

Общее решение плоской стационарной динамической задачи как основа для 

перехода к пространственному состоянию имеет вид [11]: 

 ( ) ( )
0

0 0

1 1 1 2 2 2Re[ ]pl

zu p p=   +   ; ( ) ( )0 0

1 1 1 2 2 2Re[ ]pl

yu iq iq=   +   ; (7) 

0

j j jp p g= −  ; 
0

j j jq q g= −  ; 
0

2 / (2 )r zg c G E=  ; 
0

0

21 2 r

r z

z

E

E
= − −  , 

где qj и pj – комплексные константы (определены упругими параметрами матери-

ала), 
0 /j jz iy =  + , 

j  – комплексные корни векового уравнения [11], функции 

( )j j   – комплексные функции переменной 
j . 

 

4. Метод решения задачи 

 

Совокупность компонент вектора перемещения, компонент тензора деформа-

ций и тензора напряжений определяет допустимое упругое внутренне состояния 

среды 
( ) ( ) ( ){ , , }k k k

k i ij iju =   . Совокупность таких состояний можно организовать в ба-

зис конечномерного пространства внутренних состояний [13]: 

 1 2 3, , ,..., ,...k =     . 

Базисные элементы пространства Ξ можно организовать, если придать функ-

циям ( )j j   в (7) последовательно следующие значения: 

( )
( )

1 1 1 1

2 22 2

0 0
, , , ,... , 1, 2,3,...

0 0

n n

n n

i
n

i

            
 =                      

 

Тем самым построить набор плоских вспомогательных упругих состояний, кото-

рые могут быть использованы в интегральных операторах (6) для построения уже 

множества пространственных состояний для трансверсально-изотропной среды. 

Это множество и определит базис пространства Ξ. 

Внутреннее состояние k  на границе определит граничное состояние: 
( ) ( ){ , }k k

k iv iu p = , 
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где ( )k

ivu  – перемещения точек границы тела; ( ) ( )k k

i ij ip n=   – усилия на границе. 

Набор таких состояний образует базис пространства граничных состояний 

 1 2 3, , ,..., ,...kG =     . 

После построения базисов пространств состояний их элементы подлежат орто-

нормированию, которое можно осуществить по разработанному рекурсивно-мат-

ричному алгоритму ортогонализации [14]. Алгоритм в своей работе использует 

назначенные в конкретной задаче перекрестные скалярные произведения, напри-

мер для базиса пространства G: 

 ( ) ( )( , )k l k l

iv iv

S

u u dS  =  , (8) 

где S – поверхность тела. 

Решение представляет собой ряд Фурье: 

1

k k

k

c


=

 =  . 

 
( )

1

k

i k i

k

u c u


=

= ; 
( )

1

k

ij k ij

k

c


=

 =  ; 
( )

1

k

ij k ij

k

c


=

 =  . (9) 

В условиях второй основной задачи теории упругости, когда на границы тела 

заданы перемещения ее точек ivu , коэффициенты Фурье вычисляются следующим 

образом: 

 ( )k

k iv iv

S

c u u dS=  . (10) 

 

5. Решение задачи 

 

Рассмотрим решение динамической задачи для конечного кругового цилиндра. 

Материал цилиндра – алевролит крупный темно-серый [15]. До начала решения  

в методе граничных состояний проводится обезразмеривание параметров задачи [16]. 

После процедуры: 

– упругие характеристики материала: 
0

6.21zE = ; 5.68rE = ; 2.29rG = ; 
0

2.55zG = ; 

0
0.22z = ; 0.24r = ; 

– цилиндр занимает объем 0 0{( , ) 0 1, 2 2}V r z r z=   −   ; 

– плотность материала ρ = 2; 

– скорость распространения возмущения c = 0.25. 

С практической точки зрения интерес составляют возмущения, являющиеся 

гармоническими во времени. Пусть на боковой поверхности цилиндра в осевом 

направлении заданы перемещения по такой функции, изменяющейся от коорди-

наты 0z , чтобы после подстановки 0z z ct= −  перемещения изменялись по цикли-

ческому закону, а не устремлялись в бесконечность. 

Пусть граничные условия (ГУ) на участках поверхности цилиндра заданы сле-

дующим образом: 

Граница 1:  0

0

1
cos ; 0 1, 2 2}

2 2

z
u w r z

 
= − = = −   

 
; 
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Граница 2: 
0

1
; 0 2, 0 1}

2
u w z r= = = −   ; (11) 

Граница 3:  
0

1
; 0 2, 0 1}

2
u w z r= = =   . 

Если проводить решение задачи, используя граничные условия непосред-

ственно в форме (11), то полученное решение будет удовлетворять граничным 

условиям (с определенной погрешностью) лишь на области 02 2z−   . После об-

ратной параметризации при фиксированной координате 2 2z−    и увеличении 

времени будeт наблюдаться односторонние осцилляции компонент упругого поля, 

что не будет соответствовать поставленной задаче в гармонической форме. 

Здесь необходимо представить функцию 01
cos

2 2

z
u

 
= −  

 
 в виде степенного ряда: 

 
2 2

0

0

( 1)1

2 (2 )!4

n n nN

n
n

z
u

n=

− 
= −  . (12) 

Предположим, что нужно обеспечить сходимость рядов на конечном интервале 

времени 0 20t  , при этом гарантированно не будет осцилляций? если удержи-

вать 15 первых членов ряда, т.е. последний член ряда имеет переменную 28

0z . 

Если использовать полный ряд (12) в качестве граничных условий, то восстано-

вить в рамках одной задачи упругое поле, удовлетворяющее на границе заданному 

полю перемещений на принятом интервале времени, не представляется возмож-

ным. В данном случае возникает необходимость в использовании принципа неза-

висимости действия сил и, как следствие, в решении 15 отдельных краевых задач. 

На боковой поверхности цилиндра при n = 0 ГУ: u = 1/2 и w = 0. В этой и по-

следующих задачах граничные условия (11) на торцовых поверхностях (границы 2 

и 3) остаются без изменений. Знаки и коэффициенты при членах ряда будут учи-

тываться в окончательном решении. 

В таблице приведен вид функций компонент вектора перемещения в базисных 

элементах пространства Ξ (показано 8 элементов). 

Компоненты вектора перемещения ортонормированного базиса 

N u w 

ξ1 0.1624r  00.3072z−  

ξ2 0.4425r−  00.1128z−  

ξ3 00.1856rz  2 2

00.0838 0.1805r z−  

ξ4 00.2469rz−  2 2

00.4366 0.1648r z−  

ξ5 
3 2

00.3301 0.0617 0.239r r rz− − +  
2 2

0 0(0.3081 0.2334 0.1593 )z r rz+ −  

ξ6 
3 2

00.4492 0.0882 0.2235r r rz− −  
2 2

0 0( 0.3104 0.6446 0.0635 )z r z− + −  

ξ7 
3 2

0 0( 0.2446 0.1417 0.1738 )z r r rz− − +  
2 4 2 2 2 4

0 0 00.025 0.032 0.174 0.275 0.89r r z r z z− − + + −  

ξ8 
3 2

0 0(0.6952 0.1147 0.2118 )z r r rz− −  
2 4 2 2 2 4

0 0 00.17 0.124 0.318 0.514 0.004r r z r z z− − − + +  

 

Решение первой задачи является строгим: u = 1/2r; w = 0. Потребовалось всего 

два элемента базиса. Коэффициенты Фурье (10): 1  0.365513c = ; 2  0.995691c = − . 
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Граничные условия на боковой поверхности во второй задаче (n = 1) имеют 

вид: 2

0 8u z=  и w = 0. 

Для решения задачи используем базис внутренних состояний из 20 элементов. 

Оценку сходимости решения проведем путем сопоставления заданных ГУ с полу-

ченными в ходе решения. Штриховая линия – заданные граничные условия, 

сплошная – полученные в результате решения. На рис. 2 показаны граничные усло-

вия при использовании пяти членов ряда, а на рис. 3 – при 20. 

    

Рис. 2. Восстановленные перемещения на границе при 5 элементах базиса 

Fig. 2. Reconstructed displacements at the boundary with 5 basis elements 
 

    

Рис. 3. Восстановленные перемещения на границе при 20 элементах базиса 

Fig. 3. Reconstructed displacements at the boundary with 20 basis elements 
 

Далее покажем решение задачи для последнего члена ряда (12) со степенью  

n = 28. ГУ имеют вид: 28

0 536870912u z=  и w = 0. 

Для решения данной задачи уже потребовался базис из 60 элементов. Рисунок 4 

представляет собой сумму Бесселя. График позволяет косвенным образом судить 

о сходимости решения. 

На рис. 5 представлена верификация граничных условий на одной торцовой и 

боковой поверхностях. 

Максимальная погрешность составила 3.38%. С увеличением числа использу-

емых элементов базиса погрешность уменьшается. 

Окончательное решение, представляющее собой сумму решений всех задач, 

умноженных на соответствующие коэффициенты, согласно (12) и подстановке  

в решение 0z z ct= − . 

На рис. 6 показана верификация граничных условий окончательного решения 

на боковой поверхности цилиндра в момент времени t = 0. 
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Рис. 4. Сумма Бесселя 

Fig. 4. Bessel sum 
 

Граница 3 

 

Граница 1 

 

Рис. 5. Верификация граничных условий в пятнадцатой задаче 

Fig. 5. Verification of boundary conditions in the fifteenth problem 
 

    

Рис. 6. Верификация граничных условий окончательного решения 

Fig. 6. Verification of boundary conditions of the final solution 
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Благодаря тому, что ряд (12) является знакочередующимся, погрешности от 

каждой задачи не суммируются. 
 

                 
 a    b  c d   e 

        
  f   g 

Рис. 7. Изолинии: а – перемещение u, b – перемещение w, c – напряжение σrr, d – напряже-

ние σzz, e – напряжение σθθ, f – напряжение σzr, g – контур деформированного состояния 

Fig. 7. Isolines of (a) displacement u, (b) displacement w, (c) stress σrr, (d) stress σzz, (e) stress 

σθθ, and (f) stress σzr, (g) contour of the deformed state 
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Изолинии компонент упругого поля окончательного решения имеют полино-

миальный вид и представлены в виде изолиний (в явном виде необозримы) на рис. 7. 

С учетом осевой симметрии компонент упругого поля относительно оси вращения 

показано меридианное сечение с 0 1r   и 2 2z−   . На рис. 7, g сплошной ли-

нией показан контур деформированного состояния, штриховой – недеформиро-

ванного. В силу малости упругих деформаций контур показан в гипертрофирован-

ном виде. 

Все полученные компоненты упругого поля строго удовлетворяют уравнениям 

(1)–(5). 

 

Заключение 

 

В работе решение стационарно-динамической задачи теории упругости в усло-

виях, когда на границе тела заданы перемещения, строится следующим образом. 

По условию задачи, возмущения распространяются с постоянной скоростью c, что 

позволило ввести подвижную координату 0z z ct= −  и использовать общее реше-

ние плоской стационарной задачи эластостатики (7) для трансверсально-изотроп-

ной среды с поправками на комплексные параметры среды и корни характеристи-

ческого уравнения (теперь в нем учитываются скорость с и плотность ρ). На основе 

общего решения, определяющего упругие деформации и напряжения двумерного 

состояния тела, строится конечное множество плоских вспомогательных состоя-

ний. Далее по формулам (6) осуществляется переход к множеству пространствен-

ных осесимметричных состояний. Это множество определяет пространства внут-

ренних и граничных состояний в аппарате метода граничных состояний. Затем 

пространства состояний ортонормируются «по перемещениям», используя пере-

крестные скалярные произведения (8). Окончательно искомые векторы и тензоры 

разлагаются в ряды (9) с одинаковыми коэффициентами Фурье (10). 

В условиях второй основной задачи, когда в динамической задаче за возмущения 

принимаются перемещения точек границы и носят, например, колебательный ха-

рактер, заданную гармоническую функцию необходимо разложить в степенной ряд 

с определенной точностью. Далее для каждого члена ряда проводится решение отдель-

ной задачи, и затем полученные решения суммируются. Однако ввиду того, что орто-

нормированный базис как самая энергоемкая в плане машинного времени процедура 

строится один раз и используется в решении каждой задачи, решение множества задач 

не вызывает принципиальных трудностей. Следует только «наполнить» простран-

ства состояний достаточным числом элементов для возможности решать задачи  

с большим показателем у степенной функции, так как там заданные перемещения 

носят практически сингулярный характер (левый график на рис. 5 границы 3). 

В перспективе можно редуцировать решение несимметричных стационарно-

динамических задач для анизотропных тел. Методика решения стационарных 

неосесимметричных краевых задач показана в работе [17], а методика построения 

упругих полей от действия неосесимметрицных объемных сил – в работе [18]. 
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