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Аннотация. Исследовано влияние механической активации на процесс формирования композиционных частиц си-

стемы FeV50-Cr-Ti- Hf прессованных образцов FeV50-Cr-Ti-Hf при горении в азотной среде в условиях высокого давления. 
На основе полученных данных рентгеноструктурного анализа установлено, что продолжительность механической акти-
вации в течение 2 ч является оптимальной для получения композиционных частиц с соотношением компонентов, близким 
к стехиометрическому. При этом отклонения от стехиометрического соотношения для Hf и FeV составляют менее 5 
мас. %, а для Ti и Cr – менее 2 мас. %, при сохранении неизменного фазового состава. Механические испытания горяче-
прессованных образцов, полученных в результате синтеза смеси с оптимальным временем механической активации, по-
казали, что твердость таких образцов достигает 1858±50 HV с пределом прочности на изгиб 363±18 МПа. 
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Abstract. The influence of mechanical activation on the formation process of composite particles of the FeV50-Cr-Ti-Hf system 

of pressed FeV50-Cr-Ti-Hf samples during combustion in a nitrogen environment under high pressure conditions was investigated. 
Based on the obtained X-ray diffraction analysis data, it was established that a mechanical activation duration of 2 hours is optimal 
for obtaining composite particles with a component ratio close to the stoichiometric one. Moreover, deviations from the stoichio-
metric ratio for Hf and FeV are less than 5 wt. %, and for Ti and Cr – less than 2 wt. %, while maintaining an unchanged phase 
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composition. Mechanical tests of hot-pressed samples obtained as a result of the synthesis of a mixture with an optimal mechanical 
activation time showed that the hardness of such samples reaches 1858 ± 50 HV with an ultimate flexural strength of 363 ± 18 MPa. 
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Введение 

 
Концепция синтеза многокомпонентных систем с 

равномерным или «околоэквимолярным» процент-
ным содержанием элементов (от 5% и выше) открыла 
новый класс материалов – высокоэнтропийные 
сплавы (ВЭС) [1] и высокоэнтропийные керамики 
(ВЭК) [2]. Состав каждого элемента в таких системах 
варьируется от 5 до 35 атомных процентов. Исследо-
вания таких материалов показывают, что исключи-
тельные свойства высокоэнтропийных материалов 
достигаются за счет четырёх «ключевых эффектов»: 
высокой энтропии, искажения кристаллической ре-
шетки, замедленной диффузии и эффекта «коктейля» 
[3]. Следует отметить, что свойства многокомпонент-
ных систем определяются не только составом элемен-
тов, но и образованием фаз: в зависимости от состава, 
способов изготовления и обработки сплавы ВЭС мо-
гут содержать упорядоченные и неупорядоченные 
фазы твердого раствора. Ключевую роль в этом иг-
рают как атомы отдельных элементов, так и форми-
рующиеся фазы, при этом все они вносят вклад в ко-
нечные свойства [4].  

Многокомпонентные сплавы и керамики обла-
дают многообещающими характеристиками, такими 
как высокая коррозионная стойкость, износостой-
кость, повышенная твердость и другие механические 
свойства [5]. Этот класс материалов активно исследу-
ется, расширяя методы их получения. К числу мето-
дов относятся вакуумно-дуговая плавка [6], селектив-
ное лазерное сплавление [7], магнетронное распыле-
ние [8] и другие.  

Несмотря на значительные исследования, остается 
актуальным поиск эффективных способов синтеза 
высокоэнтропийных материалов и композиций, со-
держащих высокоэнтропийные фазы с улучшенными 
физико-механическими свойствами. Одним из пер-
спективных методов считается самораспространяю-
щийся высокотемпературный синтез (СВС). Его пре-
имущества – высокая производительность, низкое 
энергопотребление, экологическая безопасность по 
сравнению с традиционными методами, а также воз-
можность регулировки структуры и свойств конеч-
ных продуктов за счет выбора режима сгорания и дав-
ления. На сегодняшний день системы ВЭС и ВЭК (а 

также многокомпонентные композиции) на основе 
тугоплавких металлов недостаточно изучены, однако 
интерес к таким сплавам возрастает и исследуется 
различными научными группами материаловедов [9].  

Одним из широко распространённых методов по-
вышения реакционной способности обрабатывае-
мых веществ является их механическая активация 
(МА). Такой подход позволяет изменять физико-хи-
мические свойства материалов, что влияет на актив-
ность и стабильность формирования фаз, а также 
обеспечивает возможность получения материалов с 
заранее определенными характеристиками [10].  

Целью работы является изучение влияния механиче-
ской активации на структуру и свойства керамики на ос-
нове многокомпонентной системы FeV50-Cr-Ti-Hf-N. 

 
Материалы и методы 

 
В качестве исходных компонентов порошковой 

смеси использовали порошки хрома марки ПХМ (раз-
мером частиц менее 50 мкм), титана марки ПТС (раз-
мером менее 280 мкм), феррованадия марки FeV50 
(размер частиц ≤ 200 мкм) и металлического гафния 
(размер частиц ≤ 200 мкм). Чистота шихтовых по-
рошков хрома, титана и гафния составляла более 
99,0 мас.%. Для порошка феррованадия FeV50 чи-
стота составила порядка 98,0 мас.%.  

Шихтовые компоненты смешивались согласно 
стехиометрического соотношения относительно со-
единения [HfTiCr(FeV)]N (рис. 1, а), затем проводи-
лась механическая активация смеси при помощи пла-
нетарной мельницы (рис. 1, b) при частоте вращения 
840 об/мин в атмосфере аргона. Продолжительность 
механической активации варьировалась от 0 до 3 ч. 
Соотношение массы стальных шаров диаметром 8 мм 
и порошковой смеси составило 4 к 1. Из полученной 
порошковой смеси методом холодного одноосного 
прессования при давлении 35 МПа формировались 
образцы диаметром 23 мм. Синтез образцов (рис. 1, c) 
осуществлялся в реакторе высокого давления объе-
мом 15 л. 

Производилось вакуумирование реактора, напол-
нение азотом (чистота 99,99%) и подача электриче-
ского тока на поджигающую спираль. Для осуществ-
ления равномерного прогрева прессованного образца 
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между верхней его поверхностью и поджигающей 
спиралью помещался вспомогательный воспламеня-
ющийся слой. В качестве поджигающего слоя был ис-

пользован порошок титана. После остывания в закры-
том реакторе до комнатной температуры образец из-
влекался из камеры. 

 

 
                             a                                     b                                                                                 c 

 
Рис. 1. Стадии получения керамических материалов из FeV50-Cr-Ti-Hf -N 

 
Fig. 1. Stages of obtaining ceramic materials from FeV50-Cr-Ti-Hf-N 

 
Температуру синтеза измеряли с помощью воль-

фрамо-рейниевых термопар WR 5/20 диаметром 0,5 мм, 
подведенных в центр образца. Измерения выполняли с 
помощью многоканального измерителя («RealLab», 
Россия). Рентгенофазовый анализ полученных продук-
тов синтеза осуществляли на дифрактометре Shimadzu 
XRD 6000 (Shimadzu Corporation, Япония) с использо-
ванием CuKα-излучения и базы данных PDF4+. Микро-
структуру конечных продуктов исследовали при по-
мощи сканирующего электронного микроскопа с като-
дом Шоттки Tescan MIRA 3 LMU (Tescan Orsay 
Holding, Брно, Чехия), дополнительно оснащенного 
энергетико-дисперсионным рентгеновским спектро-
метром Oxford Instruments Ultim Max 40 (Oxford 
Instruments, Хай-Уиком, Великобритания). 

Твердость по Виккерсу рассчитывалась при по-
мощи твердомера Метолаб 703 (Россия) с нагрузкой 
на алмазный индентор 30 кг и 20-секундной выдерж-
кой. Предел прочности на изгиб определялся на уни-
версальной электромеханической испытательной ма-
шине INSTRON 3369 (Великобритания) методом 
трехточечного изгиба со скоростью движения тра-
версы 0,2 мм/мин. 

 
Результаты и обсуждение 

 
На рис. 2 приведены дифрактограммы, а в таблице – 

фазовый состав шихтовой смеси FeV50-Cr-Ti-Hf в зави-
симости от продолжительности механической актива-
ции (от ручного перемешивания 0 ч до 3 ч МА).  

Анализ полученных дифрактограмм показал, что 
в исследуемой смеси на протяжении всей продолжи-
тельности механической активации в диапазоне 0–3 ч 
присутствуют фазы хрома, феррованадия, титана и 
гафния. Другие фазы не выявлены.  

Согласно таблице наиболее близкое к заданному 
соотношению (стехиометрическому) массовое соот-
ношение компонентов смеси достигается при про-
должительности механической активации 2 ч, при 
этом отклонение от исходных пропорций составляет 
не более 4 мас. % для гафния и феррованадия, а для 
титана и хрома – менее 2 мас.%. На рис. 3 представ-
лены РЭМ-изображения микроструктуры (рис. 2, a–
c) с картированием по элементам исходной смеси 
Cr-FeV50-Hf-Ti при различной продолжительности 
механической активации. 

Установлено, что в исходной смеси без МА 
(рис. 3, а) наблюдается неравномерное распределе-
ние металлических частиц Hf, Ti, Cr, FeV.  

Проведение механической активации способ-
ствует формированию композиционных частиц (рис. 
3, b, c), состоящих из крупных частиц гафния с мел-
кодисперсными включениями частиц других метал-
лических компонентов рассматриваемой системы. 
Установлено, что интенсивный процесс формирова-
ния таких частиц начинается в диапазоне времени 
МА от 1 до 2 ч.  

Дальнейшее увеличение времени механической 
активации приводит к агломерации таких частиц и 
образованию комков. При этом на стенках барабана 
планетарной мельницы и мелющих шарах наблюда-
ется налипание порошка, что приводит к отклоне-
нию концентрации компонентов смеси от изна-
чально заданного состава (что согласуется с рис. 2 и 
таблицей).  

Процесс формирования таких частиц наглядно от-
ражен на рис. 3, d. Так, при ручном смешении (рис. 3, 
d, фрагмент 1) видна четкая граница между части-
цами различных элементов, входящих в исходных со-
став шихты. 
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а) ручное смешение  

b) продолжительность МА 1 ч 
 

 
c) продолжительность МА 2 ч 

 
d) продолжительность МА 3 ч 

 
 

Рис. 2. Дифрактограммы порошковой шихты Cr-FeV50-Hf-Ti в зависимости от продолжительности механической активации 
(фазы:1 – Hf, 2 – Ti, 3 – Cr, 4 – FeV): a – без МА; b – 1 ч; c – 2 ч; d – 3 ч 

 
Fig. 2. Diffraction patterns of the Cr-FeV50-Hf-Ti powder mixture depending on the duration of mechanical activation  

(phases: 1 – Hf, 2 – Ti, 3 – Cr, 4 – FeV): a – without MA; b – 1 h; c – 2 h; d – 3 h 
 
 

Фазовый состав шихтовой смеси FeV50-Cr-Ti-Hf в зависимости от времени механической активации 
 

Обнаруженные 
фазы 

Продолжительность механической активации, ч 
Без МА 0,5 1 2 3 

 Содержание фаз, мас.% 
FeV 7 10 24 20 23 
Cr 24 25 22 17 20 
Ti 44 31 23 13 22 
Hf 25 36 31 50 35 
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Рис. 3. РЭМ-изображения микроструктуры и картирование по элементам исходной 
 смеси при продолжительности МА: а – 0 ч; б – 1 ч; в – 2 ч; г – 1 – без МА, 2 – 1 ч МА, 3 – 2 ч МА 

 
Fig. 3. SEM – image of the microstructure and elemental mapping of the initial mixture depending on the MA duration:  

a – 0 h; b – 1 h; c – 2 h; d – 1 – no MA, 2 – 1 h MA, 3 – 2 h MA 
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Увеличение времени МА до 1–2 ч сглаживает эту 
границу между элементами и способствует более тес-
ному контакту частиц (см. рис. 3, в, фрагменты 2 и 3). 

Установлено, что образцы без механической акти-
вации многофазны и представлены главным образом 
фазами HfN, TiN, VN, HfCr2, Ti, Ti0,475V0,25Cr0,25Fe0,025, 
Hf3V2N5. Образцы, полученные при МА 60 мин, 
имели композиционную структуру. Энергодисперси-
онный анализ этих образцов показал, что элементы 
Ti, Hf, V, Fe, Cr, N распределены по поверхности и 
образуют матрицу, причем Cr является преобладаю-
щим элементом. При этом наблюдаются включения с 
высокой концентрацией элементов Ti, Hf, N и малым 
содержанием (3–6 ат. %) элементов V, Fe, Cr. 

В случае 2-часовой механической активации на 
всех полученных рентгенограммах имеет место сла-
бая интенсивность пиков при высоком фоне (что, ве-
роятно, отражает формирование твердых растворов). 
При этом структура таких образцов наиболее равно-
мерна. 

Увеличение времени механической активации до 
3 ч (рис. 4) приводило к агломерации частиц, налипа-
нию их на стенках планетарной мельницы и мелю-
щих шарах, что способствовало отклонению концен-
трации компонентов смеси от изначально заданного 
состава и появлению локальных областей, где при-
сутствовали включения с преобладанием (Hf–Ti) N и 
малым содержанием (2–5 ат. %) элементов V, Fe, Cr. 

 

    

 
 

Рис. 4. РЭМ-изображения микроструктуры продуктов синтеза в зависимости  
от времени механической активации: а – 0 ч; б – 1 ч; в – 2 ч 

 

Fig. 4. SEM images of the microstructure of the synthesis products depending on the time of mechanical activation:  
a – 0 h; b – 1 h; c – 2 h 
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Заключение 
 

Таким образом, в работе продемонстрировано суще-
ственное влияние механической активации на процесс 
формирования композиционных частиц системы  
Cr-FeV50-Hf-Ti, а также структуру и фазовый состав 
продуктов синтеза. Оптимальным временем МА, при 
котором активно формируются композиционные ча-
стицы системы Cr-FeV50-Hf-Ti с соотношением компо-
нентов, максимально приближенным к стехиометриче-
скому, является 2 ч.  

В работе показана принципиальная возможность по-
лучения в режиме высокотемпературного синтеза с 

предварительной механической активацией компози-
ционной керамики с дисперсионными нитридными 
включениями, а также многокомпонентной керамики, 
состоящей из твердых растворов. Предварительные ме-
ханические испытания горячепрессованных образцов, 
полученных в результате синтеза смеси с оптимальным 
временем механической активации, показали, что твер-
дость таких образцов достигает 1858±50 HV с пределом 
прочности на изгиб 363±18 МПа. Для получения высо-
коплотных компактов требуется дальнейшее уплотне-
ние материалов и проведение исследований влияния 
процесса измельчения продуктов синтеза на процесс их 
уплотнения. 
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