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THE LINDELÖF NUMBER IS fu-INVARIANT

Two Tychonoff spaces X and Y are said to be l-equivalent (u-equivalent) if Cp(X)

and Cp(Y) are linearly (uniformly) homeomorphic. N.V.Velichko proved that the

Lindelöf property is preserved by the relation of l-equivalence. A. Bouziad

strengthened this result and proved that the Lindelöf number is preserved by the

relation of l-equivalence. In this paper the concept of the support different variants

of which can be founded in the papers of S.P. Gul′ko and O.G. Okunev is intro-

duced. Using this concept we introduce an equivalence relation on the class of

topological spaces. Two Tychonoff spaces X and Y are said to be fu-equivalent if

there exists an uniform homeomorphism h: Cp(Y) → Cp(X) such that supph x and

supph–1 x are finite sets for all x∈X and y∈Y. This is an intermediate relation be-

tween relations of u- and l-equivalence. In this paper it has been proved that the

Lindelöf number is preserved by the relation of fu-equivalence.

Keywords: u-equivalence; Lindelöf number; Function spaces; Set-valued map-

pings.

Introduction

All spaces below are assumed to be Tychonoff. RX is a space of all real-valued

functions on X, Cp(X) is a space of all real-valued continuous functions on X equipped

with the topology of pointwise convergence.

 Cp(X |F) = {f∈Cp(X ): f (x) = 0 for all x∈F}, where F is a subset of X. The restriction

of a function f to a subset A is denoted by f |A. The cardinality of a set A is denoted by

|A|. ℵ0 is the countable cardinal, l(X) is the Lindelöf number of X. Fin A is a family of

all finite subsets of a set A. For a set-valued mapping p: X → Y and sets A⊂X and B⊂Y,

we define the image of A as a set { }( ) ( ) :p A p x x A= ∈∪ , and preimage of B as a set

{ }1( ) : ( )p B x X p x B
−

= ∈ ≠ ∅∩ . A set-valued mapping p: X → Y is called lower semi-

continuous if a preimage of every open subset of Y is open in X. It is called surjective if

for any y∈Y there exist x∈X such that y∈p(x).

1. Concept of the support

Definition 1.1. Let X be a topological space. A linear subspace A⊂RX is called suit-

able if for any point x∈X, its open neighborhood Ox, and two functions f′, f″∈A there

exist a function f∈A such that f (x) = f ″ (x) and f (x′) = f ′ (x′) for all x′∈X \Ox. A point

x∈X is said to be a zero-point of a family A⊂RX if f(x) = 0 for all f∈A. Denote by ker A

the set of all zero-points of a family A.

The examples of suitable subspaces are Cp(X), Cp(X |F), where F is a closed subset

of a space X, and then ker Cp(X |F) = F. Following definitions are analogous to the defi-

nitions introduced by O.G.Okunev in [4] for t-equivalent spaces.

Definition 1.2. Let X, Y be topological spaces, A, B – suitable subspaces of spaces

RX and RY, respectively, and let h:B → A be an uniform homeomorphism such that the

image of the zero-function 0Y ∈B under h is the zero-function 0X ∈A. Fix a point x∈X
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and ε > 0. We call a point y∈Y ε-essential for x (under h) if for any open neighborhood

Oy of y there exist functions g′, g′′∈B, coinciding on the set Y \Oy and satisfying the

following inequality:

|h(g′)(x) – h(g′′)(x)| > ε. (1)

Furthermore, we say that a point y is ε-inessential for x if it is not ε-essential for x,

and call the set of all points that are ε-essential for x the ε-support of x (under h) and de-

note it by supph x
ε

. The union of ε-supports of x (under h) over all positive ε is called

the support of x (under h) and is denoted by supph x. If h is fixed, then we write suppε x

(supp x, respectively).

Remark 1.3. If x∈ker A, then supp x = ∅.

It is clear that if ε < δ, then suppδ x⊂suppε x, therefore 
1/

supp supp
n

n

x x

∈

=

N

∪ . It is

not difficult to verify that suppε x is a closed set. Then we have the following two prop-

erties of the support:

(i) suppε x is a nonempty finite subset of Y for any ε > 0 (if x∉ker A);
(ii) supp:X → Y is a countable-valued, surjective, lower semicontinuous mapping.

To prove these properties, we note some results of S.P.Gul′ko [3]. Let X, Y be topo-
logical spaces, A, B – suitable subspaces of spaces RX and RY, respectively, and let

h:B → A be an uniform homeomorphism such that the image of the zero function 0Y ∈B

under h is the zero function 0X ∈A. Let x∈X, δ > 0, and let K⊂Y be a finite subset. We
introduce into consideration the quantity

a(x,K,δ) = sup |h(g′)(x) – h(g′′)(x)|, (2)

where the supremum is taken over all g′, g′′∈B such that |g′(y) – g′′(y)| < δ for all y∈K.

This definition was introduced by S.P.Gul′ko in [3]. We also define

a(x,K,0) = sup |h(g′)(x) – h(g′′)(x)|, (3)

where the supremum is taken over all g′, g′′∈B coinciding on K (if K is empty, then the

supremum is taken over all g′, g′′∈B). It is obvious that if 0≤δl≤δ2, then

a(x,K,δl)≤a(x,K,δ2), and if K1⊂K2⊂Y, then a(x,K2,δ)≤a(x, K1,δ) for all δ≥0. In [3], it was

proved that for all x∈X \ker A there exist a nonempty finite subset K(x)⊂Y such that

(1) a(x,K(x),δ) < ∞ for any δ > 0,

(2) a(x,K′,δ) = ∞ for any proper subset K′ of K(x) and any δ > 0.

For all x∈ker A we put K(x) = ∅. We now prove that the set K(x) has a stronger

property which we get substituting δ > 0 for δ≥0 in (2). To prove this, we need the fol-

lowing

Lemma 1.4. If a(x,K,0) < ∞, then a(x,K,δ) < ∞ for all δ > 0.

Proof. Fix x∈X and finite K⊂Y such that a(x,K,0) < ∞. We prove that the function

( , , )a x Kδ δ�  is continuous at the point 0. Let δ > 0. Since h is an uniform homeomor-

phism, there exist a finite set K′⊂Y and δ > 0 such that for all g′, g′′∈B we have the im-

plication

(|g′(y) – g′′(y)| < δ for all y∈K′)⇒|h(g′)(x) – h(g′′)(x)| < ε.

Let g′, g′′∈B and |g′(y) – g′′(y)| < δ for all y∈K. Since B is a suitable subspace, there

is a function g∈B such that

( ), ;
( )

( ), \ .

g' y y K
g y

g'' y y K' K

∈⎧
= ⎨

∈⎩
 (4)
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Then |g(y) – g′′(y)| < δ for all y∈K′, hence, |h(g)(x) – h(g′′)(x)| < ε. Now by the trian-
gle inequality we obtain

|h(g′)(x) – h(g′′)(x)|≤|h(g′)(x) – h(g)(x)|+|h(g)(x) – h(g′′)(x)| < a(x,K,0)+ε.

Passing to the supremum over all g′, g′′∈B such that |g′(y) – g′′(y)| < δ for all y∈K

we have inequality a(x,K,δ)≤a(x,K,0)+ε, which implies that the function ( , , )a x Kδ δ�

is continuous at the point 0. ■

For any x∈X put a(x) = a(x,K(x),0). Now we can rewrite the properties of the set-

valued mapping ( )x K x�  in new notations.

(K1) If g′, g′′∈B and g′ |K(x) = g′′ |K(x), then |h(g′)(x) – h(g′′)(x)|≤a(x).

(K2) For any proper subset K′ of K(x) and any real b there exist functions g′, g′′∈B

such that g′ |K′ = g′′ |K′ and |h(g′)(x) – h(g′′)(x)| > b.

Besides, this mapping surjectively maps the space X \ker A onto Y \ker B (see [3]),

i.e., for any y∈Y \ker B there exist x∈X \ker A such that y∈K(x). Now we shall prove the
properties (i) and (ii) of the support suppε x.

Lemma 1.5. K(x)⊂suppε x for any ε > 0.

Proof. Let x∉ker A. Fix a point y0∈K(x) and ε > 0. We shall show that y0 is ε-

essential for x. Put a = max(ε,a(x)), K′ = K(x)\{y0}. By the property (K2), there exist

functions g′, g′′∈B such that g′|K′ = g′′|K′ and |h(g′)(x) – h(g′′)(x)| > 2a. Then there is a

neighborhood U of y0 that does not meet K′. Choose a function g∈B such that g|Y \U =

g′|Y \U and g(y0) = g′′(y0). Then we have g|K(x) = g′′ |K(x) and |h(g)(x) – h(g′′)(x)| ≤ a(x) ≤a.

By the triangle inequality we obtain that |h(g)(x) – h(g′)(x)| > a≥ε. Besides, g coincides

with g′ on the set Y \U. By definition this means that y0 is ε-essential for x. ■

 So, lemma 1.5 implies that the set suppε x is nonempty for any ε > 0 and any

x∉ker A, and it also implies that the set-valued mapping suppx x�  from X \ker A onto

Y \ker B is surjective.

Lemma 1.6. The set suppε x is finite for any ε > 0.

Proof. Let x∉ker A and ε > 0. Since h is an uniform homeomorphism, there exist a

finite set K⊂Y and δ > 0 such that for all g′, g′′∈B we have the implication (|g′(y) –

g′′(y)| < δ for all y∈K)⇒|h(g′)(x) – h(g′′)(x)| < ε. Let us show that suppε x⊂K. Fix y0 in

Y \K. Then there is a neighborhood U of y0 that does not meet K. Choose functions

g′, g′′∈B coinciding on the set Y \U. Then they coincide on K, hence, |h(g′)(x) –

h(g′′)(x)| < ε. By the definition this means that y0 is ε-inessential for x, i.e., y0∉suppε x.

Thus, suppε x⊂K. ■

Property (i) of the support is proved. For the proof of property (ii) we introduce into

consideration the set Kε(x)⊂Y for any x∈X \ ker A and any ε > 0, satisfying the follow-

ing properties:

(KE0) Kε (x) is finite and nonempty;

(KE1) a(x, Kε (x),0)≤ε;

(KE2) a(x,K′,0) > ε for any proper subset K′ of Kε(x).

Such a set we could obtain from the set K from the previous proof, decreasing this

set while it satisfies point (KE2). There can be several sets, satisfying properties (KE1)

and (KE2), then we denote by Kε (x) anyone of them. The following lemma is an analo-

gous to result obtained by O.G.Okunev [4] for t-equivalence.

Lemma 1.7. Let A⊂Cp(X), x0∈X \ker A, ε > 0, G is open subset of Y such that

suppε x0 ∩G≠∅. Then there is an open neighborhood U of x0 such that Kε (x)∩G≠∅ for

all x from U.
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Proof. We may assume that suppε x0 ∩G = {y0}, where y0 is any ε-essential point for

x0. By definition, for the neighborhood G of y0 there exist functions g′, g′′∈B coinciding

on Y \G such that |h(g′)(x0) – h(g′′)(x0)| > ε. Put U = {x∈X: |h(g′)(x) – h(g′′)(x)| > ε};

then U is an open neighborhood of x0. Let us check that Kε(x)∩G≠∅ for all x from U.

Assume the converse. Let x∈U be a point such that Kε(x)∩G = ∅. Then g′ coincides

with g′′ on Kε(x). Therefore |h(g′)(x) – h(g′′)(x)|≤ε, A contradiction with x∈U. ■
From the result obtained by O.G.Okunev for t-equivalence it follows that the set-

valued mapping suppε has a weaker property then the lower semicontinuity. In our case

this property of suppε implies the lower semicontinuity of the mapping supp. To prove

this fact we shall need

Lemma 1.8. Let x∈X \ker A, ε > 0. There exists δ > 0, such that Kε(x)⊂suppδ x.

Proof. Fix a point y0∈Kε(x). Put K′ = Kε(x)\{y0}. By definition of Kε(x), there exist

functions g′, g′′∈B coinciding on K′ such that |h(g′)(x) – h(g′′)(x)| > ε. There exists

δ0 > 0 such that

|h(g′)(x) – h(g′′)(x)| > ε+δ0. (5)

Let us show that 
00

suppy x
δ

∈ . Choose a neighborhood U of y0 that does not meet

K′, and a function g∈B coinciding with g′ on Y \U such that g(y0) = g′′(y0). Then g coin-

cides with g′ on Kε(x), hence, |h(g′′)(x) – h(g)(x)|≤ε. From this and inequality (5) it fol-

lows that |h(g′)(x) – h(g)(x)| > δ0. But g′ coincide with g on Y \U, consequently, y0 is δ0-

essential for x. Let′s enumerate all the points of the set Kε(x) = {y1,…,yn}, and for any yi
chose δi so that yi is δi-essential for x. Put δ = min{δi: i≤n}; then Kε(x)⊂suppδ x. ■

Theorem 1.9. If A⊂Cp(X), then the set-valued mapping supp:X → Y is lower semi-
continuous.

Proof. Put φ(x) = supp x. We need to show that for any nonempty open set G⊂Y it′s

preimage φ–1(G) = {x∈X: φ(x)∩ G≠∅} is open in X. Let G⊂Y is any nonempty open set

such that φ–1(G)≠∅, and let x∈φ–1(G). Then there exists ε > 0 such that suppε x∩G≠∅.

By Lemma 1.7 there exists an open neighborhood U of x such that Kε(z)∩G≠∅ for all z

from U. By Lemma 1.8, for all z∈X and ε > 0 we can find δ0 > 0 (depending on z and ε)

such that 
0

( ) supp suppK z z z
ε δ

⊂ ⊂ , i.e., supp z∩G≠∅, hence, φ–1(G) is open, and the

mapping supp is lower semicontinuous. ■

Besides, the set supp x has the following property.

Theorem 1.10. Let x∈X.

(a) If two functions g′, g′′∈B coincide on the set supp x, then h(g′)(x) = h(g′′)(x).

(b) If F is a closed subspace of Y such that h(g′)(x) = h(g′′)(x) for any two functions

g′, g′′∈B coinciding on F, then supp x⊂F.

Proof. (a) Let ε > 0. Fix Kε(x). Let functions g′, g′′∈B coincide on the set supp x. By

Lemma 1.8, Kε(x)⊂supp x, therefore, |h(g′)(x) – h(g′′)(x)|≤ε. Since ε is arbitrary, we ob-

tain h(g′)(x) = h(g′′)(x).

(b) Assume the converse. Let y0∈(supp x)\F≠∅. There exists ε > 0 such that

y0∈suppε x. Let U is an open neighborhood of y0 that does not meet F . Then there are

g′, g′′∈B coinciding on Y \U such that |h(g′)(x) – h(g′′)(x)| > ε. But in this case g′ coin-

cides with g′′ on F, whence h(g′)(x) = h(g′′)(x). This contradiction proves the theorem. ■

The concept of the support can be generalized.

Definition 1.11. If h:B → A is an arbitrary uniform homeomorphism we shall define

a mapping h*: B→ A by the formula h* (g) = h(g) – h(0Y) for all g∈B. Then h* is also an
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uniform homeomorphism and h*(0Y) = 0X. Put

( ) ( ) 111 1

* *

**

supp supp , supp supp ,

supp supp , supp supp .

h h h h

hhh h

x x x x

y y y y
−

−
− −

ε ε

ε ε

= =

= =

2. Main result

Definition 2.1. Two Tychonoff spaces X and Y are said to be fu-equivalent if there

exists an uniform homeomorphism h:Cp(Y)→Cp(X) such that supph x and 
1

supp
h

y
−

 are

finite sets for all x∈X and y∈Y.
The main result of the paper is following.

Theorem 2.2. If X and Y are fu-equivalent then l(X) = l(Y).

For the proof we need some notions.

Definition 2.3. Let φ:X → Y be a finite-valued, surjective, lower semicontinuous

mapping of X to Y. For φ and any U⊂Y we put φ*(U) = {x∈X: φ(x)⊂U}.

We denote by � the family of all open subsets of Y.

Definition 2.4. A set-valued mapping : TG X→  is said to be φ-extractor (simply

extractor) if the following conditions hold:

S(1) φ*(U)⊂G(U) for any U∈�;

S(2) For any increasing consequence (Un)n∈N, Un∈� such that

( )n
k n k

X G U

∈ ≥

=

N

∪ ∩  (6)

the following equality holds:

.

n

n

Y U

∈

=

N

∪  (7)

The complement of G(U) to X we denote by F(U) and the set-valued mapping

: TF X→  we call φ-co-extractor (simply co-extractor).

The concept of extractor was introduced by A.Bouziad in [1].

Let � be an open cover of Y closed with respect to finite unions. Fix any infinite

cardinal τ. Let us introduce some notations. Put [ ] { }U U ' : U ' U, U ' .
τ
= ⊂ ≤ τ∪

 We say that the set A⊂X has a type Fτ in X or A is Fτ-subset of X, where τ is a cardi-

nal, if A can be represented as a union of a family � of closed subsets so that F ≤ τ . By

�τ we denote the family of all subsets of X that have a type Fτ. Denote by �τ the family

of all subsets A of X such that l(A)≤τ.

Let l(X)≤τ. Then �τ ⊂�τ. Define the mapping

[ ] ( ): Fin F U , F , F Fin F ,U U U
τ ττ
→ = ∈  (8)

which will be called φ-constructor from � (simply constructor). For this aim we define

a number ρ(x) = |φ(x)| for any x∈X. For any F⊂X we put ρ(F) = min{ρ(x): x∈F}. The

number ρ(F) is said to be level of F. Further, for any U∈� and k∈N put U[k] = {x∈X:

|φ(x)∩U| ≥ k}. Since φ is lower semicontinuous, we see that U[k] is open in X for any

k∈N (it can be empty for k ≥ 2).
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Suppose 
1

F { , , } F
n

F F
τ

= ⊂… . Put 
A i

i A

F F

∈

= ∩  for any A⊂{1, … , n}, A≠∅ and put

F { : {1, , }},
A

F A n= ≠ ∅ ∅ ≠ ⊂ …  i.e., F  is the family of all nonempty intersections of

elements from F. Let FF ∈  and k = ρ(F). It is not difficult to verify that the family
[ ] [ ]U { : U}k k

U U= ∈  is an open cover of F which Lindelöf number does not exceed τ,

hence it contains a subcover [ ]{ : U }k

F
U U ∈  of F, where U U

F
⊂  such that U

F
≤ τ .

Put ( )
F

(F) U
F

F

U

∈

= ∪ ∪ . Obviously, [ ](F) UU
τ

∈ , and if 
1 2
F F⊂ , then ( ) ( )1 2

F FU U⊂ .

The constructor (8) is defined. Note one property of the constructor.

(*) For any F Fin F
τ

∈ , nonempty FF ∈ , and x∈F the following inequality holds:

( ) (F) ( )x U Fϕ ∩ ≥ ρ . (9)

Definition 2.5. An open cover � of Y is said to be τ-trivial if it has subcover which

cardinality does not exceed τ. Otherwise this cover is said to be τ-nontrivial.

Proof of theorem 2.2. Let h:Cp(Y) → Cp(X) be an uniform homeomorphism such

that supph x and 
1

supp
h

y
−

 are finite sets for all x∈X and y∈Y, and let l(X)≤τ. Every uni-

form homeomorphism between Cp-spaces can be extended to some uniform homeomor-

phism h* between the spaces of all functions (see [2]). The following lemma states that

the mapping supph will not changes if we substitute the uniform homeomorphism

h:Cp(Y) → Cp(X) for its extension h*:RY → RX.

Lemma 2.6. Let h:Cp(Y) → Cp(X) be an uniform homeomorphism and h*:RY → RX

– its uniformly continuous extension. Then supph x = supph* x for any x∈X.
Proof. Let y be ε-essential point for x under h for some ε > 0. It follows from defini-

tion, that y is ε-essential for x under h*. Therefore, *

supp supp
h h
x x

ε ε
⊂ . Then, we shall

prove that *

supp supp
h h
x x

ε δ
⊂  if 0 < δ < ε. Let y be ε-essential point for x under h* for

some ε > 0, and let 0 < δ < ε. Put ε0 = (ε – δ)/2. Let Oy be an open neighborhood of y.

There exist functions g0′, g0′′∈R
Y, coinciding on the set Y \Oy and satisfying the fol-

lowing inequality:

|h*( g0′)(x) – h*( g0′′)(x)| > ε.

Since h* is an uniform homeomorphism, there exist a finite set K⊂Y and Δ > 0 such

that for all g′, g′′∈RY we have the implication

(|g′(y) – g′′(y)| < Δ for all y∈K) ⇒ |h*(g′)(x) – h*(g′′)(x)| < ε0. (10)

Put F = K∩Oy. There is a function g1∈Cp(Y) such that

g1|K = g0′|K, (11)

and a function g2∈Cp(Y) such that g2|Y \Oy = g1|Y \Oy, g2|F = g0′′|F . Then

g2|K = g0′′|K. (12)

By (11), (12), and (10) we have

|h*(g0′)(x) – h(g1)(x)| < ε0, |h*(g0′′)(x) – h*(g2)(x)| < ε0,

hence,

|h(g1)(x) – h(g2)(x)| ≥ |h*(g0′)(x) – h*(g0′′)(x)| – |h*(g0′)(x) – h(g1)(x)| –

– |h(g2)(x) – h*(g0′′)(x)| > ε – 2ε0 = δ.

Inclusion *

supp supp
h h
x x

ε δ
⊂  is proved. This completes the proof. ■
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Further, we can assume without loss of generality that h is an uniform homeomor-

phism from RY to RX satisfying following conditions:

1. h(Cp(Y)) = Cp(X) and h–1(Cp(X)) = Cp(Y);

2. h takes zero-function 0Y∈Cp(Y) to zero-function 0X∈Cp(X);

3. supph x and 
1

supp
h

y
−

 are finite sets for all x∈X and y∈Y.

 Suppose that l(Y) > τ to obtain a contradiction. In our terminology it means that

there exists τ-nontrivial open cover � of Y. We can assume without loss of generality

that � is closed with respect to finite unions and �⊂�, where � is a base of Y which

consists of all functionally open subsets of Y. Family � is closed with respect to finite

unions. Let φ = supph:X → Y. Note an important property of φ.

(Φ) If g′, g′′∈RY and g′|φ(x) = g′′|φ(x), then h(g′)(x) = h(g′′)(x).

For any A⊂Y define the function eA∈R
Y by the formula

0, ;
( )

1, .
A

y A
e y

y A

∈⎧
= ⎨

∉⎩
(13)

For every open set V∈� put

G(V) = {x∈X: h(eV)(x) = 0}, F(V) = {x∈X: h(eV)(x)≠0}.

Lemma 2.7. G is φ-extractor.

Proof. Check that condition S(1) is fulfilled. Let V∈� and x∈φ*(V). Since φ(x)∈V,

we have eV|φ(x)≡0, hence, by property (Φ), we get h(eV)(x) = 0, i.e., x∈G(V).

It remains to check S(2). Let (Un)n∈N, Un∈�, be any increasing consequence, satis-

fying condition (6). Assume that 
n

n

Y U

∈

≠

N

∪ . Put 
n

n

U U

∈

=

N

∪ . Let y∈Y \U. Choose a

finite subset K = {x1, … , xp}⊂X and δ > 0 so that for any function f∈RX the following
implication holds:

( | f (xi)| ≤ δ for all i∈{1, … , p}) ⇒ |h–1( f )(y)| < 1.

Such a choice is possible because of the continuity of the mapping h–1 and the con-

dition h–1(0X) = 0Y. By condition (6), we can choose a number N such that xi∈G(Un) for

all n > N and i∈{1, … , p}, i.e., ( )( ) 0
n

U i
h e x = . Passing to the limit as n→∞, we obtain

h(eU)(xi) = 0 for all i∈{1, … , p}. Then from (13) we have |eU(y)| < 1, hence, y∈U. This

contradiction concludes the proof. ■

Now denote by � the family of all functionally closed subsets of Y. Any functionally

open subset V admits a decomposition 
n

n

V F

∈

=

N

∪  where Fn∈� and Fn⊂Fn+1 for all

n∈N. If there exists a decomposition satisfying the following condition:

φ* (V)\φ*(Fn)≠∅ for all n∈N,

then we say that the subset V is adequate. This notion was introduced by A.Bouziad in [1].

Lemma 2.8. Let τ be an infinite cardinal, �⊂�  – an open, τ-nontrivial cover of Y,

closed with respect to finite unions, and {Ut}t∈T ⊂� – a subfamily such that |T|≤τ. Then

there is a family 
0

{ } [U]
s s S

V
∈ ℵ

⊂ , closed with respect to finite unions, such that

1. |S|≤τ,

2. each set Vs is adequate,
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3. 
t s

t T s S

U V

∈ ∈

⊂∪ ∪ .

Proof. Put 
t

t T

U U

∈

= ∪ . Since the cover � is τ-nontrivial, we have Y \U≠∅. Choose

x1∈X such that φ(x1)⊄U and a set V1∈� such that φ(x1)⊂V1. Suppose x1, … , xn and

V1, … ,Vn are already chosen. The set Y \ (U ∪V1∪ … ∪Vn) is nonempty, hence there is

an element xn+1∈X such that φ(xn+1)⊄U ∪V1∪ … ∪Vn. There exist Vn+1∈� such that

φ(xn+1)⊂Vn+1. We get two consequences (xn)n∈N, xn∈X and (Vn)n∈N, Vn∈� for all n∈N.

Put 
n

n

V V

∈

=

N

∪ . Let {Ws}s∈S be the family of all finite unions of sets from the family

{Ut}t∈T. For each s∈S put Vs = Ws∪V. It is clear that the family 
0

{ } [U]
s s S

V
∈ ℵ

⊂  is

closed with respect to finite unions, |S|≤τ, and 
t s

t T s S

U V

∈ ∈

⊂∪ ∪ . Let us check that each Vs

is adequate. Let s∈S. Fix a decomposition ( )s
n n

F
∈N

 of Ws and a decomposition

( )k
n n

F
∈N

 of Vk, k∈N. The consequence ( )s
n n

G
∈N

, where 1s s n

n n n n
G F F F= ∪ ∪ ∪… , is a

required decomposition of Vs. Besides, we have (xn)n∈N⊂φ*(Vs) and 
1

*( )s
n n
x G

+
∉ϕ  for

all n∈N. ■

Lemma 2.9. Let S be infinite set and {Vs}s∈S be a family of adequate functionally

open subsets of Y, closed with respect to finite unions. Then ( )
s

s S

F V

∈

∪  is Fτ-subset of X,

where τ = |S|.

Proof. Put 
s

s S

V V

∈

= ∪ . Let ( )s
n n

F
∈N

 be a decomposition of Vs such that C
s

n
F ∈  and

1

s s

n n
F F

+
⊂  for all n∈N. For any natural n and s∈S choose a function ( )s

n
g C Y∈  such

that

\
0, 1.

s
s

n

s s

n n Y VF
g g≡ ≡

For every x∈φ*(Vs), and every natural k put

( ) ( ){ }( , ) ( , )( ) ' : ( ') ( ) 1/s s s

k k n x s k n x s
U x x X h g x h g x k

+ +
= ∈ − < ,

where n(x, s) is the least number n such that ( ) s

n
x Fϕ ⊂ . Then ( )s

k
U x  is an open neigh-

borhood of x∈X. Put

*( )

( )

s

s

s k

k x V

A U x

∈ ∈ϕ

=

N

∩ ∪ , Bs = {x∈X: φ(x)∩(V \Vs) ≠ ∅}, ( )
s s

s S

A A B

∈

= ∪∩ .

We now prove that G(V) = A. Since the sets As and Bs are Gδ-subsets of X, it will be

enough for the proof of the lemma. First we shall show that

F(V) ⊂ X \ A. (14)

Let x′∈F(V). Then there exists ε > 0 such that |h(eV)(x′)| > ε. Since φ(x′) is a finite set

and the family {Vs}s∈S closed with respect to finite unions, there exists s∈S such that

φ(x′)∩V⊂Vs, i.e., x′∉Bs. Note that, since, ( ') ( ')
s

V x V x
e e

ϕ ϕ
=  by (Φ) we have

( )( ') ( )( ')
s

V V
h e x h e x= . Since ( )( ') ( )( ')

s
V V

h e x h e x= > ε  and lim
s

s

n V
n

g e
→∞

= , there exists
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natural N such that

( )( ')s

n
f g x > ε  for all n > N.

 Choose a number k such that k ≥ max{N,1/ε}. We shall check that

*( )

' ( )

s

s

k

x V

x U x

∈ϕ

∉ ∪ .

It will imply that x′∉A
s
, and inclusion (14) will be proved. Let x∈φ*(V

s
). Note that,

since ( , ) ( ) 0s

k n x s x
g

+ ϕ
≡ , we have ( , )( )( ) 0s

k n x s
h g x

+
= . Then

( ) ( ) ( )( , ) ( , ) ( , )( ') ( ) ( ') 1/s s s

k n x s k n x s k n x s
h g x h g x h g x k

+ + +
− = > ε ≥ ,

i.e., ' ( )s

k
x U x∉ . Inclusion (14) is proved.

 Let us prove the inverse inclusion X \A⊂F(V). Since the sets V
s
 are adequate, we can

assume that there decompositions satisfy the following property: *( ) \ *( )s
s n

V Fϕ ϕ ≠ ∅

for all n∈N. Let x′∉A. Choose s∈S such that x′∉A
s
∪B

s
. Then we have φ(x′)∩V⊂V

s
. Fix

natural k such that 
*( )

' ( )

s

s

k

x V

x U x

∈ϕ

∉ ∪ , natural m such that ( ') s

m
x V Fϕ ∩ ⊂ , and

x0∈φ*(V
s
) such that 

0
( ) s

m
x Fϕ ⊄ . Then we have n(x0, s) > m and

0( , )( ') ( ') s s

s m k n x s
x V x V F F

+
ϕ ∩ = ϕ ∩ ⊂ ⊂ .

Put i = k+n(x0, s). Since 
0

' ( )s

k
x U x∉ , we have 

0
( )( ') ( )( ) 1/s s

i i
h g x h g x k− ≥ . Be-

sides, 
0

( )( ) 0s

i
h g x = . From this we obtain that ( )( ') 1/s

i
h g x k≥ . But since

( ') ( ')
s

V x V x
e e

ϕ ϕ
=  and ( ') ( ')

s

s

V x i x
e g

ϕ ϕ
= , we have ( )( ') ( )( ')s

i V
h g x h e x= , and, finally,

|h(eV)(x′)|≥1/k, i.e., x′∈F(V). The statement of the lemma is proved. ■
By 2.9 and 2.8 we have

Theorem 2.10. Let τ be an infinite cardinal and �⊂�  – an open, τ-nontrivial cover

of Y, closed with respect to finite unions, {Ut}t∈T ⊂ � – a subfamily such that |T| ≤ τ.

Then there is V∈[�]τ such that 
t

t T

U V

∈

⊂∪  and F(V) is Fτ-subset of X.

Now we have all the facts necessary to prove the result, formulated in the beginning.

We shall construct by induction increasing consequence (Vn)n∈N, Vn∈[�]τ such that

n

n

Y V

∈

=

N

∪ . Simultaneously we shall construct the consequence (�n)n∈N, �n∈Fin �τ,

such that �n′⊂�n′′ for n′ < n′′. For this aim we shall use the constructor U and the co-

extractor F defined above.

Put �0 = X. Pick a set V1∈[�]τ such that U(�0)⊂V1 and F(V1)∈�τ (this is possible by

Theorem 2.10), and put �1 = {X, F(V1)}. Choose the set V2∈[�]τ so that V1∪U(�1)⊂V2

and F(V2)∈�τ . Suppose we have already defined the sets Vi∈[�]τ and �i∈Fin �τ for all

numbers i such that 1 ≤ i ≤ k, satisfying the following conditions:

1. F(Vi)∈�τ, 1 ≤ i ≤ k;

2. Vi∪U(�i)⊂Vi+1, 1 ≤ i ≤ k – 1, where �i = {X, F(V1), … , F(Vi)}, 1 ≤ i ≤ k.
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Choose the set Vk+1∈[�]τ so that the following conditions hold:

Vk∪U(�k)⊂Vk+1 and F(Vk+1)∈�τ. (15)

Put �k+1 = {X, F(V1), … , F(Vk+1)}. The consequences (Vn)n∈N, Vn∈[�]τ and (�n)n∈N,

�n∈Fin �τ are already defined. Prove by induction over n the following statement:

(ST) For any natural n and any subset {j1, … , jk}⊂{1, … , n} such that

1
( ) ( )

kj jF V F V∩ ∩ ≠ ∅… , the following inequality holds:

1
( ( ) ( )) 1

kj jF V F V kρ ∩ ∩ ≥ +… . (16)

For k = 1 it is enough to show that ρ(F(Vn))≥2. For any x∈X by inequality (9) we

have |φ(x)∩Vn| ≥ |φ(x)∩V1| ≥ |φ(x)∩U(�0)| ≥ ρ(X) ≥ 1. Therefore, if ρ(x) = 1 for some

x∈X, then φ(x)⊂Vn, consequently by S(1) we have x∉F(Vn), and thus, ρ(F(Vn)) ≥ 2.
Suppose statement (ST) is true for all numbers n such that 1≤n≤N. Let us prove that

it is true for n = N+1. It suffices to show that for any subset {j1, … , jk}⊂{1, … , N}

such that 
1 1

( ) ( ) ( )
kj j NF F V F V F V

+
= ∩ ∩ ∩ ≠ ∅… , we have ρ(F) ≥ k+2. Put

1
' ( ) ( )

kj jF F V F V= ∩ ∩… , then F = F′∩F(VN+1). By the inductive assumption, we have

ρ(F′) ≥ k+1. Assume that ρ(F) = k+1 to obtain a contradiction. Let x∈F such that

|φ(x)| = k+1. Since ' F
N

F ∈ , we see that by condition (15) and inequality (9), it follows

that |φ(x)∩VN+1| ≥ |φ(x)∩U(�N)| ≥ ρ(F′) ≥ k+1. Hence, φ(x)⊂VN+1, and by condition

S(2), it follows that x∉F(VN+1), therefore, x∉F. This contradiction concludes the proof

of statement (ST). In particular, inequality (16) involves that for any x∈X there is a

number n0 such that x∉F(Vn) for all n > n0, i.e., x∈G(Vn). In other words, equality (6)

holds. So, by condition S(2), we have 
n

n

Y V

∈

=

N

∪ . Since Vn∈[�]τ for all n∈N, we see

that the cover � of Y is τ-trivial, a contradiction. So, l(Y)≤τ. Consequently, l(Y)≤ l(X).

Analogously, l(X)≤ l(Y). Theorem is proved. ■
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