2008 Математика и механика № 2(3)

УДК 515.122

Т.Е. Хмылёва

ОБОБЩЕНИЕ УДВОЕНИЯ ПО АЛЕКСАНДРОВУ ПРЯМОЙ ЗОРГЕНФРЕЯ И МНОЖЕСТВА РАЦИОНАЛЬНЫХ ТОЧЕК

В данной работе рассматривается обобщение известного в топологии пространства «двойная окружность Александрова». Доказано, что при различных натуральных n и m пространства $X \otimes n$ и $X \otimes m$ не являются гомеоморфными, если X – прямая Зоргенфрея, и являются гомеоморфными, если X – множество рациональных точек отрезка[0,1].

Ключевые слова: удвоение по Александрову, прямая Зоргенфрея.

Пусть X — хаусдорфово топологическое пространство. Символом $X\otimes n$ будем обозначать множество $X\times\{0,1,\ldots,n-1\}$, наделенное следующей топологией: объявим базой топологии одноточечные множества $\{(x,k)\}$ для любого $x\in X$ и $k=1,\ldots,n-1$ и множества $U\times\{0,1,\ldots,n-1\}\setminus\bigcup_{k=1}^{n-1}\{(x,k)\}$ для любого открытого множества $U\subset X$ и любого $x\in U$.

Пространство $X \otimes n$ является обобщением хорошо известного примера «двойная окружность Александрова».

В работе [1] доказано, что для несчетного метрического компакта X пространства $X\otimes n$ и $X\otimes m$ негомеоморфны, если $n\neq m$. Тем же способом, что и в [1] можно показать, что если пространство X содержит несчетный метрический компакт, то пространства $X\otimes n$ и $X\otimes m$ при $n\neq m$ негомеоморфны. В данной работе мы рассматриваем пространство $X\otimes n$ при X=K, где K – прямая Зоргенфрея и X=Q, где Q – множество рациональных точек интервала [0,1].

Напомним, что прямая Зоргенфрея K — это множество вещественных чисел с базой окрестностей в точке $x \in K$: $B(x) = \{[x,r), x,r \in K, x < r, r \in Q\}$. Отличительным свойством прямой Зоргенфрея от вещественной прямой является тот факт, что все компактные множества в K не более чем счётны [2]. Но как и для вещественной прямой, оказалось, что пространства $K \otimes n$ и $K \otimes m$ не являются гомеоморфными при $n \neq m$ (теорема 3). Для множества рациональных точек $Q \in [0,1]$, в котором компакты также не более чем счётны, мы докажем гомеоморфность пространств $Q \otimes n$ и $Q \otimes m$ для любых $n, m \in \mathbb{N}$.

Теорема 1. Пусть [0,1) — отрезок прямой Зоргенфрея, $X = [0,1) \times \{0,1,2\}$, $Y = [0,1) \times \{0,1\}$. Тогда пространства X и Y негомеоморфны.

Доказательство. Доказательство проведем методом от противного: предположим, что существует гомеоморфизм $\phi: X \to Y$. Каждой неизолированной точке $(x,0) \in X$ при отображении ϕ соответствует неизолированная точка $(y,0) \in Y$. Изолированные точки (x,1) и $(x,2) \in X$ переходят в изолированные точки пространства Y, то есть $\phi(x,1) = (y',1)$, а $\phi(x,2) = (y'',1)$. Так как $y' \neq y''$, то либо $y' \neq y$, либо $y'' \neq y$. Определим множества

68 Т.Е. Хмылёва

$$A = \{x \in [0,1) : |y' - y| \neq 0\},$$

$$B = \{x \in [0,1) : |y'' - y| \neq 0\}.$$

Так как $A \cup B = [0;1)$, то хотя бы одно из множеств A или B является несчётным. Не нарушая общности, можно считать, что это множество A. Для любого натурального $l \in \mathbb{N}$ положим $A_l = \left\{ x \in A : |y' - y| \in \left[\frac{1}{l+1}, \frac{1}{l} \right) \right\}$. Ясно, что $\prod_{l=1}^{\infty} A_l = A$ и, в силу несчетности множества A, найдется такое $l_0 \in \mathbb{N}$, что множество A_{l_0} несчётно.

Покажем теперь, что существует точка $x_0 \in A_{l_0}$, такая, что для любого $\varepsilon > 0$ $(x_0, x_0 + \varepsilon) \bigcap A_{l_0} \neq \emptyset$. Действительно, если это не так, то для любого $x \in A_{l_0}$ существует $\varepsilon_x > 0$, такое, что $(x, x + \varepsilon_x) \bigcap A_{l_0} = \emptyset$.

Рассмотрим точки $x,x_1 \in A_{l_0}$, $x < x_1$. Тогда $x_1 \not\in (x,x+\varepsilon_x)$ и, значит, $x_1 \ge x + \varepsilon_x$. Следовательно, $[x,x+\varepsilon_x) \cap [x_1,x_1+\varepsilon_{x_1}] = \varnothing$. Так как множество A_{l_0} несчётно, то мы получаем несчётное семейство попарно непересекающихся получитервалов $\{[x,x+\varepsilon)\}_{x\in A_{l_0}}$ на отрезке [0,1). Но это противоречит сепарабельности отрезка [0,1).

Итак, существует точка $x_0 \in A_{l_0}$, такая, что $(x_0, x_0 + \varepsilon) \cap A_{l_0} \neq \emptyset$ для любого $\varepsilon > 0$. Это означает, что мы можем найти последовательность $x_1, x_2, \dots, x_n, \dots$, $x_n \in A_{l_0}$, $x_n \neq x_0$ для всех $n \in \mathbb{N}$, которая сходится справа к точке $x_0 \in A_{l_0}$. Это означает, что для каждого i = 0, 1, 2 последовательность $\{(x_n, i)\}_{n=1}^{\infty}$ сходится к точке $(x_0, 0)$ в пространстве X.

Пусть $\phi(x_n,0) = (y_n,0)$, $\phi(x_n,1) = (y_n',1)$, $\phi(x_n,2) = (y_n'',1)$. В силу непрерывности отображения $\lim_{n\to\infty} (y_n,0) = \lim_{n\to\infty} \phi(x_n,0) = \phi(x_0,0) = (y_0,0)$ и

 $\lim_{n\to\infty} \left(y_n',1\right) = \lim_{n\to\infty} \varphi\left(x_n,1\right) = \varphi\left(x_0,0\right) = \left(y_0,0\right).$ Рассмотрим окрестность точки

$$(y_0,0) \in Y$$
 $V = \left[y_0, y_0 + \frac{1}{4l_0} \right] \times \{0\} \cup \left(y_0, y_0 + \frac{1}{4l_0} \right) \times \{1\}$. Так как отображение φ не-

прерывно, найдется окрестность $U(x_0,0)\subset X$, такая, что $\varphi(U)\subset V$. Поскольку последовательность (x_n,i) сходится к точке $(x_0,0)$ для i=0,1,2, то найдется $n_0\in \mathbb{N}$, такое, что при $n\geq n_0$ $(x_n,i)\in U(x_0,0)$. Следовательно, $\varphi(x_n,i)\in V(y_0,0)$ при i=0,1,2, и $n\geq n_0$ и, значит $(y_n,0)\in V(y_0,0)$, $(y_n',1)\in V(y_0,0)$, $(y_n'',1)\in V(y_0,0)$ при $n\geq n_0$.

Отсюда получаем, что
$$\frac{1}{l_0} \leq \left| y_n' - y_n \right| \leq \left| y_n' - y_0 \right| + \left| y_0 - y_n \right| \leq \frac{1}{4l_0} + \frac{1}{4l_0} = \frac{1}{2l_0} \; . \; \; \text{Полу-}$$

ченное противоречие опровергает наше предположение о существовании гомеоморфизма ф.

Теорема 2. Пусть [0,1) — отрезок прямой Зоргенфрея. Тогда пространства $X = [0,1) \otimes n$ и $Y = [0,1) \otimes m$ негомеоморфны при $n \neq m$.

Доказательство аналогично доказательству теоремы 1.

Теорема 3. Пусть K — прямая Зоргенфрея. Тогда пространства $K \otimes n$ и $K \otimes m$ при $n \neq m$ негомеоморфны.

Для доказательства достаточно заметить, что прямая Зоргенфрея гомеоморфна своему отрезку $[0,1) \subset K$, и воспользоваться теоремой 2.

Теорема 4. Пусть Q — множество рациональных точек отрезка [0,1], $X = Q \times \{0,1,2\}$, $Y = Q \times \{0,1\}$. Тогда пространства X и Y гомеоморфны.

Доказательство. Занумеруем точки множества $Q: Q = \{r_1, r_2, ..., r_n, ...\}$ и определим отображение $f: X \to Y$ по индукции

$$f(r_1,0) = (r_1,0) \in Y,$$

$$f(r_1,1) = (r_1,1) \in Y,$$

$$f(r_1,2) = (q_2,1) \in Y,$$

где точка q_2 выбрана таким образом, что $0 < |q_2 - r_1| < \frac{1}{2}$.

Предположим теперь, что для точек (r_k, i) при $k \le n, i = 0,1,2$ отображение f определено так, что выполнены следующие условия

$$f(r_k,0) = (r_k,0) \in Y,$$

$$f(r_k,1) = (q_{2k-1},1) \in Y,$$

$$f(r_k,2) = (q_{2k},1) \in Y,$$

причем точки q_{2k-1} и q_{2k} являются точками с минимальным номером, удовлетворяющие условию

$$|r_k - q_{2k-1}| < \frac{1}{2^k} \quad \text{if } |r_k - q_{2k}| < \frac{1}{2^k}.$$

Заметим, что если точка $r_k \notin \{r_1,q_2,q_3,...,q_{2k-2}\}$, то $q_{2k\text{-}1} = r_k$.

Положим $A_n = \{r_1, q_2, q_3, \dots, q_{2n-1}, q_{2n}\}$ и определим f для точек (r_{n+1}, i) , i=0,1,2:

$$f(r_{n+1},0) = (r_{n+1},0),$$

 $f(r_{n+1},1) = (q_{2k+1},1),$
 $f(r_{n+1},2) = (q_{2k},1),$

где точки q_{2k-1} и q_{2k} – точки с наименьшим номером, удовлетворяющие неравенствам

$$\left|q_{2n+1}-r_{n+1}\right|<\frac{1}{2^{n+1}},\quad \left|q_{2n+2}-r_{n+1}\right|<\frac{1}{2^{n+1}}\ \text{if}\ q_{2n+1}\in A_n\,,\ q_{2n+2}\in A_n\,.$$

Такой выбор всегда возможен, так как в любой окрестности точки r_n содержится бесконечно много рациональных точек. Построенное отображение f – биективно по построению.

Докажем непрерывность отображения f в фиксированной точке $(r_n,0) \in X$. В точках $(r_n,1)$ и $(r_n,2)$ функция f непрерывна, так как эти точки являются изолированными. По определению отображения $f,\ f(r_n,0)=(r_n,0) \in Y$. Пусть $V(r_n,0)$ — окрестность точки $(r_n,0) \in Y$:

$$V(r_n,0) = ((r_n - \varepsilon, r_n + \varepsilon) \times \{0\}) \bigcup ((r_n - \varepsilon, r_n + \varepsilon) \times \{1\}) \setminus (r_n,1).$$

Выберем число $m \in \mathbb{N}$ и $\delta > 0$ так, чтобы

$$\frac{1}{2^m} < \frac{\varepsilon}{3}, \quad \delta < \frac{\varepsilon}{3}$$

и интервал $(r_n - \delta, r_n + \delta)$ не содержал точек $r_1, r_2, ..., r_{n-1}, r_{n+1}, ..., r_m$.

Положим

$$U(r_n,0) = ((r_n - \delta, r_n + \delta) \times \{0,1,2\}) \setminus \{(r_n,1),(r_n,2)\}$$

и пусть точка $(r_k, l) \in U(r_n, 0)$.

Если l=0 , то $f(r_k,0)=(r_k,0)\subset V$. Если l=1 или l=2, то из условия $(r_k,l)\in U(r_n,0)$ следует, что k>m и $|r_k-r_n|<\delta$. Отсюда получаем

$$|q_{2k-1} - r_k| < \frac{1}{2^k} < \frac{1}{2^m} < \frac{\varepsilon}{3} \text{ if } |q_{2k-1} - r_n| < |q_{2k-1} - r_k| + |r_k - r_n| < \frac{\varepsilon}{3} + \delta < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon.$$

Следовательно, точка $f(r_k,1)=(q_{2k-1},1)\in V$. Аналогично получаем, что $f(r_k,2)=(q_{2k},1)\in V$. Таким образом, $f(U)\subset V$ и непрерывность отображения f доказана.

Покажем непрерывность отображения f^{-1} . Пусть $U(r_n,0)$ — окрестность точки $(r_n,0)\in X$, $U(r_n,0)=((r_n-\varepsilon,r_n+\varepsilon)\times\{0,1,2\})/\{(r_n,1),(r_n,2)\}$. Докажем, что существует окрестность $V(r_n,0)\subset Y$, такая, что $f^{-1}(V)\subset U$. Выберем число $m\in {\bf N}$ и $\delta>0$ так, чтобы выполнялись следующие условия: m>n, $\frac{1}{2^m}<\frac{\varepsilon}{3}$, $\delta<\frac{\varepsilon}{3}$ и окрестность точки $(r_n,0)\in Y$ $V(r_n,0)=((r_n-\delta,r_n+\delta)\times\{0,1\})\setminus\{(r_n,1)\}$ не содержала точек $f(r_i,1)$ и $f(r_i,2)$ для $j=1,2,\ldots,m$.

Пусть точка $(r_k,0)\in X$, $(r_k,0)\not\in U$. Если i=0, то ясно, что $f^{-1}(r_k,0)=(r_k,0)\not\in V$, так как $\delta<\frac{\varepsilon}{3}$. Если же $i\in\{1,2\}$, то условие $(r_k,i)\not\in U$ означает, что либо $(r_k,i)=(r_n,i)$, либо $r_k\not\in (r_n-\varepsilon,r_n+\varepsilon)$.

Если $k \leq m$, то по определению окрестности $V(r_n,0)$, $f(r_k,0) \not\in V$, в частности $f(r_k,i) \not\in V$.

Если же k > m и $r_k \ge r_n + \varepsilon$, то

$$r_{k} - \frac{1}{2^{k}} \ge r_{n} + \varepsilon - \frac{1}{2^{k}} > r_{n} + \varepsilon - \frac{1}{2^{m}} > r_{n} + \varepsilon - \frac{\varepsilon}{3} < r_{n} + \delta,$$

$$\left(\left(r_{k} - \frac{1}{2^{k}}, r_{k} + \frac{1}{2^{k}} \right) \times \{1\} \right) \cap V = \emptyset.$$

то есть

Но по определению отображения f

$$f(r_k, i) \in \left(r_k - \frac{1}{2^k}, r_k + \frac{1}{2^k}\right) \times \{1\}$$

и, значит, $f(r_k, i) \notin V$.

Если k > m и $r_k \le r_n - \varepsilon$, то

$$r_k + \frac{1}{2^k} \le r_n - \varepsilon + \frac{1}{2^k} < r_n - \varepsilon + \frac{1}{2^m} < r_n - \varepsilon + \frac{\varepsilon}{3} < r_n - \delta$$

и, значит,

$$\left(\left(r_k - \frac{1}{2^k}, r_k + \frac{1}{2^k}\right) \times \{1\}\right) \cap V = \varnothing.$$

Следовательно, и в этом случае, $f(r_k, i) \notin V$.

Таким образом, мы показали, что $V \subset f(U)$, что равносильно условию $f^{-1}(V) \subset U$. Это доказывает непрерывность отображения f. Теорема доказана.

Следствие 5. Если Q — множество рациональных точек на отрезке [0,1] и $n, m \in \mathbb{N}$, то пространства $Q \otimes n$ и $Q \otimes m$ гомеоморфны.

Заметим, что счетность множества рациональных чисел не является необходимым условием гомеоморфности пространств $X \otimes n$ и $X \otimes m$. Нетрудно доказать, например, что для произвольного отрезка ординалов $[1,\alpha]$ пространства $[1,\alpha] \otimes n$ и $[1,\alpha] \otimes m$ гомеоморфны.

ЛИТЕРАТУРА

- Гензе Л.В., Хмылева Т.Е. Удвоение по Александрову и его обобщения // Вестник ТГУ. 2003. № 280.
- 2. Энгелькинг Р. Общая топология: Пер. с англ. М.: Мир, 1986.

Статья принята в печать 25.06.2008 г.