2010 Математика и механика № 1(9)

УДК 512.541

А.Р. Чехлов

Е-НИЛЬПОТЕНТНЫЕ И Е-РАЗРЕШИМЫЕ АБЕЛЕВЫ ГРУППЫ КЛАССА 2¹

Изучаются Е-нильпотентные и Е-разрешимые абелевы группы. Описаны вышеназванные группы в ряде классов групп.

Ключевые слова: *Е-нильпотентный элемент, Е-центральный ряд, Е-коммутант, Е-центр, Е-полупервичная подгруппа.*

Все группы в статье предполагаются абелевыми, кольца – ассоциативными. Пусть A – группа. Тогда E(A) обозначает кольцо ее эндоморфизмов, r(A) – ранг, если не оговорено противное, то A_p – ее p-компонента, а t(A) – периодическая часть. Если A – однородная группа без кручения, то t(A) – ее тип. Запись $H \le A$ означает, что H – подгруппа в A; $H \le$ fi A, что H – вполне инвариантная подгруппа в A, т.е. $fH \subseteq H$ для каждого $f \in E(A)$. Если $f: A \to B$ – гомоморфизм, то $f \mid H$ – ограничение f на $H \subseteq A$. Если B, G – группы и X – непустое подмножество B, то через Hom (B, G)X обозначим подгруппу в G, порожденную всеми подмножествами fX, где $f \in \text{Hom } (B, G)$; Hom (B, G)B совпадает со следом группы $B \in G$. Через 1_A обозначим тождественный автоморфизм группы A, через o(a) – порядок элемента $a \in A$. N – множество всех натуральных чисел, **Z** – аддитивная группа (или кольцо) целых чисел, \mathbf{Q} – аддитивная группа всех рациональных чисел. $A^1 = \bigcap_{n \in \mathbb{N}} nA$. $Z_{_{p^{\infty}}}$ – квазициклическая p-группа, \widehat{Z}_{p} – группа целых p-адических чисел, Z_{n} – циклическая группа порядка $n.\ Z(R)$ – центр кольца $R.\ Подгруппа\ G$ группы A называется чистой (или сервантной), если $G \cap nA = nG$ для каждого $n \in \mathbb{N}$; инвариантной, если $fG \subseteq G$ для каждого автоморфизма f группы A.

§ 1. Определения и некоторые свойства

Изучаемые в статье классы групп можно рассматривать как обобщение класса групп с коммутативным кольцом эндоморфизмов.

Напомним, что если R – кольцо и $a,b \in R$, то элемент [a,b] = ab-ba называется коммутатором элементов a и b. Если $a_1,\ldots,a_n \in R$, то положим по индукции $[a_1,\ldots,a_n] = [[a_1,\ldots,a_{n-1}],a_n]$.

Подгруппу H группы A назовем *коммутаторно инвариантной* (обозначение $H \le \text{ki } A$), если $[\phi, \psi]H \subseteq H$ для всех $\phi, \psi \in E(A)$. Коммутаторно инвариантные подгруппы изучались в [1].

Приведем несколько свойств коммутаторов.

- 1) $-[\phi,\psi] = [-\phi,\psi] = [\phi,-\psi] = [\psi,\phi], [\alpha,\phi+\psi] = [\alpha,\phi] + [\alpha,\psi], [\alpha+\beta,\phi] = [\alpha,\phi] + [\beta,\phi];$
- **2)** $[[\alpha,\beta],\gamma] + [[\beta,\gamma],\alpha] + [[\gamma,\alpha],\beta] = 0, \ [\alpha,[\beta,\gamma]] + [\beta,[\gamma,\alpha]] + [\gamma,[\alpha,\beta]] = 0$ (тождества Якоби);

¹ Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы. Государственный контракт П 937 от 20 августа 2009 г.

- **3)** $[\alpha,\beta,\gamma] = [\alpha\beta,\gamma] [\beta\alpha,\gamma], [\alpha,[\beta,\gamma]] = [\alpha,\beta\gamma] [\alpha,\gamma\beta];$
- **4)** $\varphi^n[\varphi,\psi] = [\varphi,\varphi^n\psi], \ \psi^n[\varphi,\psi] = [\psi^n\varphi,\psi], \ [\varphi,\psi]\varphi^n = [\varphi,\psi\varphi^n], \ [\varphi,\psi]\psi^n = [\varphi\psi^n,\psi]$ для любого $n \in \mathbb{N}$;
 - **5)** $[\alpha,\beta]\phi = \alpha[\beta,\phi] + [\alpha\phi,\beta], [\alpha,\beta]\phi = [\alpha,\beta\phi] + \beta[\phi,\alpha];$
 - **6)** $\varphi[\alpha,\beta] = [\varphi,\alpha]\beta + [\alpha,\varphi\beta], \ \varphi[\alpha,\beta] = [\varphi\alpha,\beta] + [\beta,\varphi]\alpha;$
- 7) равенство $[\alpha, \beta]^2 = 0$ равносильно как равенству $\alpha[\beta\alpha, \beta] = \beta[\alpha, \alpha\beta]$, так и равенству $[\alpha, \beta\alpha]\beta = [\alpha\beta, \beta]\alpha$;
- **8)** если элемент α обратим в кольце, то $\alpha[\beta,\gamma] = [\alpha\beta\alpha^{-1},\alpha\gamma\alpha^{-1}]\alpha$, $[\beta,\gamma]\alpha = \alpha[\alpha^{-1}\beta\alpha,\alpha^{-1}\gamma\alpha]$;
 - **9)** $[\alpha\beta,\gamma] = [\alpha,\beta\gamma] + [\beta,\gamma\alpha], [\alpha,\beta\gamma] = [\alpha\beta,\gamma] + [\gamma\alpha,\beta];$
 - **10)** $[\alpha, \beta, \gamma, \delta] + [\beta, \alpha, \delta, \gamma] + [\gamma, \delta, \alpha, \beta] + [\delta, \gamma, \beta, \alpha] = 0.$

Группу A назовем Е-*нильпотентной класса n*, если $[\alpha_1, ..., \alpha_{n+1}] = 0$, эквивалентно $[\alpha_1, ..., \alpha_n] \in Z(E(A))$, для любых $\alpha_i \in E(A)$, i = 1, ..., n+1, и $[\beta_1, ..., \beta_n] \neq 0$ для некоторых $\beta_i \in E(A)$, j = 1, ..., n.

- **11)** Для кольца R следующие условия эквивалентны:
- а) $[a,b] \in Z(R)$ для любых $a,b \in R$;
- б) [[a,b],c] = [a,[b,c]] для любых $a,b,c \in R$;
- в) [a,b,c] = [a,c,b] для любых $a,b,c \in R$;
- г) [a,bc] = [a,cb] для любых $a,b,c \in R$.

Доказательство. Импликации $a) \Rightarrow б$), b) очевидны. Эквивалентность a) и r) вытекает из свойства b3) коммутаторов.

- б) \Rightarrow а). Имеем [[b,c],a] = bca cba abc + acb, [b,[c,a]] = bca bac cab + acb. Приравнивая правые части, получаем 0 = cba + abc bac cab = [[a,b],c]. Откуда [a,b] \in Z(R) в силу произвольности элемента c.
- в) \Rightarrow а). Как и выше, из равенства [c,a,b] = [c,b,a] получаем cab-cba+bac-abc=0 или c[a,b] = [a,b]c, т.е. $[a,b] \in Z(R)$.

В свойстве 12) – 13) предполагается, что кольцо R удовлетворяет тождеству $[x_1,x_2,x_3]=0$.

12) Для любых $a,b \in R$ элементы $ab, a^2b^2, a^3b^3, \dots$ попарно перестановочны.

Доказательство. Если n > 1, то, учитывая свойство 1), п. г) и индуктивное предположение, получаем $[ab, a^nb^n] = aba^nb^n - a^nb^nab = a[ba, a^{n-1}b^{n-1}]b = a[ab, a^{n-1}b^{n-1}]b = 0$. Если же n > m > 1 и n = mq + r, где $0 \le r < m$, то

$$[a^{m}b^{m}, a^{n}b^{n}] = a^{m}[b^{m}a^{m}, a^{n-m}b^{n-m}]b^{m} =$$

$$= a^{m}[a^{m}b^{m}, a^{n-m}b^{n-m}]b^{m} = a^{2m}[a^{m}b^{m}, a^{n-2m}b^{n-2m}]b^{2m} = \dots = a^{mq}[a^{m}b^{m}, a^{r}b^{r}]b^{mq}.$$

При r=0 получаем равенство нулю, если же $r\neq 0$, то делим m на r. Согласно алгоритму Евклида, через конечное число шагов при (n,m)>1 придем к скобке вида $[a^tb^t, 1]=0$ либо при (n,m)=1 к скобке вида $[a^kb^k, ab]$, которая также равна нулю согласно уже рассмотренному случаю.

13) $[a,b]^2 = 0$ для любых $a,b \in R$. В частности, если кольцо R не содержит ненулевых нильпотентных элементов, то оно коммутативно.

Доказательство. Действительно

$$[a,b]^2 = a(bab-bba)-(abb-bab)a = a[ba,b]-[ab,b]a =$$

= $a[ba,b]-[ba,b]a = [a,[ba,b]] = 0.$

14) Кольцо R удовлетворяет тождествам $[x_1,x_2][x_3,x_4]=0$ и $[x_1,x_2,x_3]=0$ тогда и только тогда, когда $c[a,b]\in Z(R)$ для любых $a,b,c\in R$.

Доказательство. Необходимость. Имеем

$$0 = [c,d][a,b] = cd[a,b] - dc[a,b] = (c[a,b])d - d(c[a,b])$$
, r.e. $c[a,b] \in Z(R)$.

Достаточность следует из равенств

$$-[c,d][a,b] = [d,c][a,b] = d(cab - cba) - (ab-ba)cd =$$

= $d(cab-cba)-(cab-cba)d = [d,[a,b]c] = 0.$

E-*центром* группы A назовем следующую ее подгруппу

$$Z(A) = \{a \in A \mid [\varphi, \psi]a = 0 \text{ для всех } \varphi, \psi \in E(A)\}.$$

Подгруппу $A' = \langle [\phi, \psi] A \mid \phi, \psi \in E(A) \rangle$ назовем Е-коммутантом группы A. Ясно, что кольцо E(A) коммутативно в точности тогда, когда A' = 0. Если $a \in A$, то через $[\phi, \psi]a$ обозначим коммутатор элемента a.

Определим по индукции $A^{(0)}=A,\ A^{(1)}=A',...,\ A^{(n+1)}=(A^{(n)})'$ и $A^{(\alpha)}=\cap_{\rho<\alpha}A^{(\rho)}$ при предельном α .

Лемма 1.1 [2, лемма 2]. *Если А* = $B \oplus G$, *mo*

$$A' = \langle \text{Hom } (B,G)B, \text{Hom } (G,B)G, B', G' \rangle.$$

Некоторые свойства и описание Е-центра и Е-коммутанта ряда классов групп получены в [1, 2]. Так, Е-центр и Е-коммутант — вполне инвариантные подгруппы (что следует соответственно из свойств 5) и 6) коммутаторов). Отметим еще, что если, например, $A = B \oplus C$, где $B = Z_p$, а $C = Z_{p^\infty}$, то в силу леммы 1.1 A' = C[p].

Поэтому $A/A'\cong A$ и, следовательно, $(A/A')'\neq 0$. Факторгруппа по Е-центру может быть циклической. Например, если $A=B\oplus C$, где $B=\mathbf{Q}$, а $C=\mathbf{Z}$, то Z(A)=B и $A/Z(A)\cong \mathbf{Z}$. Если же $C=Z_n$, где $n=p_1^{k_1}\dots p_m^{k_m}$, а $B=Z_{p_1^\infty}\oplus \dots \oplus Z_{p_m^\infty}$, то Z(A)=B и $A/Z(A)\cong Z_n$.

E-центр группы без кручения — чистая подгруппа, а E-коммутант может не быть чистой подгруппой.

Пример 1. Пусть n > 1 — натуральное число и K — кольцо всех матриц вида

$$A = \begin{pmatrix} a & nb & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}$$
, где $a,b,c,d \in \mathbf{Z}$.

Если

$$B = \begin{pmatrix} x & ny & z \\ 0 & x & t \\ 0 & 0 & x \end{pmatrix}, \text{ To } AB - BA = \begin{pmatrix} 0 & 0 & n(bt - yd) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in Z(K) .$$

По теореме Корнера [3, теорема 110.1] существует группа без кручения, кольцо эндоморфизмов которой изоморфно K; эта группа Е-нильпотентна класса 2, коммутант которой не является чистой подгруппой.

Легко привести примеры, когда подгруппы и факторгруппы Е-нильпотентной группы не являются Е-нильпотентными. Так, пусть $A=B\oplus C$, где B и C — вполне инвариантные подгруппы с коммутативными кольцами эндоморфизмов группы без кручения A и $pB\neq B, pC\neq C$. Кольцо E(A) также коммутативно, поэтому A — Енильпотентная группа. Однако для любых $0\neq b\in B$ и $0\neq c\in C$ подгруппа $\langle b\rangle\oplus\langle c\rangle$ и факторгруппа $A/pA\cong (B/pB)\oplus(C/pC)$, как это следует из предложения 1.2, не являются Е-нильпотентными.

Напомним, что кольцо называется *нормальным* [4], если все его идемпотенты центральны. Кольцо эндоморфизмов модуля нормально тогда и только тогда, когда все его прямые слагаемые вполне инвариантны [4, утверждение 3.28].

Группу назовем Е-э*нгелевой* класса $\leq n$, если $[a, \underbrace{b, \dots, b}_n] = 0$ для любых ее эн-

доморфизмов а,b.

Предложение 1.2. B Е-энгелевой группе A все ее прямые слагаемые вполне инвариантны. B частности, кольцо E(A) нормальное.

Доказательство. Если $A = B \oplus C$, а $\alpha \in E(A)$ – такой, что $\alpha | C = 1_C$ и $0 \neq \alpha b \in C$ для некоторого $b \in B$, то определим $\beta \in E(A)$ следующим образом: $\beta | B = \alpha$ и $\beta | C = 0$. Теперь если $\psi_1 = [\beta, \alpha]$ и $\psi_{n+1} = [\psi_n, \alpha] = [\beta, \underbrace{\alpha, \dots, \alpha}_n]$, то по индукции прове-

ряется, что $\psi_n b = (-1)^n \alpha b \neq 0$. Это доказывает утверждение.

Группы с нормальным кольцом эндоморфизмов изучались в [5]; из этих результатов следует, что, например, периодические и сепарабельные группы без кручения являются Е-нильпотентными тогда и только тогда, когда их кольца эндоморфизмов коммутативны.

Группу A назовем Е-разрешимой, если $A^{(n)} = 0$ для некоторого $n \in \mathbb{N}$. Наименьшее такое n назовем классом Е-разрешимости группы A. Прямые слагаемые Е-разрешимой группы являются Е-разрешимыми группами.

Отметим, что для каждого n существуют E-разрешимые группы класса n, не являющиеся E-нильпотентными.

Пример 2. Пусть $K = T_2(\mathbf{Z})$ — кольцо целочисленных треугольных матриц порядка 2. Коммутатор любых двух матриц из K имеет вид $a = \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix}$ для некоторого $u \in \mathbf{Z}$. Поэтому произведение любых двух коммутаторов есть 0 кольца K. Согласно теореме Корнера (см. пример 1), существуют группы A с кольцом эндоморфизмов K, эти группы будут E-разрешимыми группами класса E. Если $b = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in K$, где $x \neq z$, то $ab - ba = \begin{pmatrix} 0 & u(z-x) \\ 0 & 0 \end{pmatrix}$. Откуда $[a, \underbrace{b, ..., b}] \neq 0$ для

любого n, т.е. A не будут даже E-энгелевыми.

Пример 3. Пусть $\mathbf{Z}[i] = \{m+ki \mid m,k \in \mathbf{Z}\}$ — кольцо целых гауссовых чисел. Рассмотрим кольцо $(\mathbf{Z}[i])[x,]$, состоящее из многочленов от x с коэффициентами из $\mathbf{Z}[i]$, для которых выполняется равенство $xa = \bar{a}x$, где \bar{a} — комплексное число из $\mathbf{Z}[i]$, сопряженное к a. Пусть теперь $K_n = (\mathbf{Z}[i])[x,]/(x^n)$, где (x^n) — идеал, порожденный x^n . Тогда $[f,g] = fg - gf \in xK_n$ для любых $f,g \in K_n$. Поэтому $[f_{2n-1},f_{2n}]\dots$ $[f_1,f_2] = 0$ для всех $f_i \in K_n$ при $i=1,\dots,2n$. Аддитивная группа кольца K_n является счетной редуцированной группой без кручения. Как и в примере 2, в качестве A можно взять группы, кольца эндоморфизмов которых изоморфны K_n . Поскольку, например, $[x,\underbrace{i,\dots,i}] = (-2i)^n x \neq 0$, то A не являются E-энгелевыми.

Пусть R — кольцо эндоморфизмов группы A и [x,y,y]=0 для любых $x,y\in R$. Тогда 0=[x,y+z,y+z]=[x,y,z]+[x,z,y]. Согласно тождеству Якоби [x,z,y]=[x,y,z]+[y,z,x]. Откуда 2[x,y,z]+[y,z,x]=0. Из 0=[y,z+x,z+x]=[y,z,x]+[y,z,x]+[y,x,z] получаем [y,z,x]=-[y,x,z]=[x,y,z]. Поэтому 3[x,y,z]=0. Аналогичным образом, используя свойство 10) и уже доказанное равенство 3[x,y,z]=0, можно показать, что [x,y,z,t]=0 для любых $x,y,z,t\in R$. Следовательно, всякая Е-энгелева группа класса ≤ 2 является Е-нильпотентной класса ≤ 3 , а если она не имеет элементов порядка 3, то и Е-нильпотентной класса ≤ 2 .

Из определения вытекает справедливость следующей леммы.

Лемма 1.3. Для группы А следующие условия эквивалентны:

- 1) A E-разрешимая группа класса $\leq n$;
- 2) $[\alpha_{2n-1},\alpha_{2n}]...[\alpha_1,\alpha_2] = 0$ для любых $\alpha_i \in E(A), i = 1,...,2n;$
- 3) $A^{(n-1)} \subseteq Z(A)$.

Из определения также следует, что если A — Е-разрешимая группа, то $Z(A) \neq 0$; кроме того, если $0 \neq H \leq \operatorname{ki} A$, то $H \cap Z(A) \neq 0$. Отметим для сравнения, что если G — некоммутативная нильпотентная группа и $1 < N \leq G$, то [N,G] < N и $N \cap Z(G) > 1$, где $[N,G] = \langle [x,g] \mid x \in N, \ g \in G \rangle$ — коммутант N и $[x,g] = x^{-1}g^{-1}xg$ — коммутатор x и g. Для Е-разрешимой группы A класса n возможен случай, когда $A^{(n-1)} \neq Z(A)$. Например, если $A = B \oplus C \oplus D$, где кольца E(B), E(C), E(D) коммутативны, для каждого $0 \neq b \in B$ существует $f \in \operatorname{Hom}(B,C)$ со свойством $fb \neq 0$, $\operatorname{Hom}(B,D) = 0$, и подгруппы C,D вполне инвариантны в A, то A'' = 0 и $A' = \operatorname{Hom}(B,C)B \subseteq C \neq Z(A) = C \oplus D$.

Если $H \le \text{ki } A$ и R = E(A), то положим $Z_R(A/H) = \{\bar{a} \in A/H \mid [\alpha, \beta]\bar{a} = 0$ для всех $\alpha, \beta \in R\}$. Ясно, что если $A' \subseteq B \le A$, то $B \le \text{ki } A$.

Если $H \subseteq A$, то через $N_R(H) = \{a \in A \mid [\alpha,\beta]a \in H \text{ для всех } \alpha,\beta \in R\}$ обозначим Е-нормализатор подмножества H в группе A. Индекс R иногда будем опускать. Из свойства 8) коммутаторов следует, что инвариантность подгруппы H влечет инвариантность N(H). Ясно, что H = N(H) для $H \le A$ в точности тогда, когда $H \le \text{ki } A$ и A/H- коммутаторно точная факторгруппа, т.е. для любого $0 \ne \overline{a} = a + H \in A/H$ найдутся $\phi, \psi \in E(A)$ со свойством $[\phi, \psi] \ \overline{a} \ne 0$ (факт, отмеченный в [1]). Отсюда несложно вывести, что для прямого слагаемого H выполняется равенство H = N(H) тогда и только тогда, когда H вполне инвариантно и Z(C) = 0 для каждого (эквивалентно — для некоторого в силу их изоморфизма) дополнительного прямого слагаемого C.

Ряд $A_i \subseteq A_{i+1} \subseteq \ldots \subseteq A_{i+n} \subseteq \ldots$ подгрупп A_i ($i \in I$) группы A назовем Е-*центральным*, если $A_i \le \text{ki } A$ и $A_{i+1}/A_i \subseteq Z_R(A/A_i)$ (эквивалентно, $A_{i+1} \subseteq N_R(A_i)$) для всех $i \in I$. Если же $A_i \le \text{ki } A$ для всех $i \in I$, то ряд назовем Е-*нормальным*.

Если A – группа, R = E(A), то положим по индукции

$$Z_0(A)=0, Z_1(A)=Z(A), \dots, Z_i(A)/Z_{i-1}(A)=Z_R(A/Z_{i-1}(A))$$
 и $Z_{\alpha}(A)=\bigcup_{0\leq \alpha}Z_{\alpha}(A)$ при предельном α .

Обозначим для краткости $Z_{\alpha} = Z_{\alpha}(A)$. Ряд $0 \subseteq Z_1 \subseteq \ldots \subseteq Z_{\alpha} \subseteq \ldots$ назовем верхним Е-центральным рядом группы A. Подгруппы Z_{α} назовем Е-гиперцентрами группы A. Из свойства S) коммутаторов вытекает, что все Е-гиперцентры являются вполне инвариантными подгруппами. В группе без кручения все Е-гиперцентры являются чистыми подгруппами, поэтому все факторы верхнего Е-центрального ряда также группы без кручения.

Если $H \subseteq A$, то подгруппу $\langle [\phi, \psi]h \mid h \in H$, $\phi, \psi \in E(A) \rangle$ назовем Е-коммутантом подмножества H в A и обозначим через [H,A]. Если $H \le \operatorname{ki} A$, то $[H,A] \le \operatorname{ki} A$, а если $H \le \operatorname{fi} A$, то из свойства 6) коммутаторов следует, что $[H,A] \le \operatorname{fi} A$. Всегда [B+C,A] = [B,A]+[C,A] для $B,C \le A$. Обозначим

$$[H,A]_1 = H + [H,A]$$
 и $[H,A]_{n+1} = [H,A]_n + [[H,A]_n,A]$ при $n \ge 1$.

Тогда $\overline{H} = \bigcup_{n=1}^{\infty} [H,A]_n$ — наименьшая ki-подгруппа, содержащая H. Действительно, $\overline{H} \leq$ ki A и всякая ki-подгруппа, содержащая H, содержит и \overline{H} . Из свойства 8) коммутаторов следует, что инвариантность H влечет инвариантность \overline{H} .

Положим по индукции $L_1(A)=A,\ L_{i+1}(A)=[L_i(A),A]$ и $L_{\alpha}(A)=\bigcap_{\rho<\alpha}L_{\rho}(A)$, если α — предельное число. Отметим, что $L_n(A)=A^{(n-1)}$ для $n\in {\bf N}$ и $L_{\alpha}(A)\leq {\rm fi}\ A$ для каждого ординала α .

Заметим, что

$$L_{n+1}(A) = \langle [\alpha_{2n-1}, \alpha_{2n}] \dots [\alpha_1, \alpha_2] a \mid a \in A, \ \alpha_i \in E(A), \ i = 1, \dots, 2n \rangle,$$

$$Z_n(A) = \{ a \in A \mid [\alpha_{2n-1}, \alpha_{2n}] \dots [\alpha_1, \alpha_2] a = 0, \ \alpha_i \in E(A), \ i = 1, \dots, 2n \}.$$

Е-разрешимые группы класса n являются подклассом класса BL_n групп — групп A со свойством $[\phi,\psi]^n=0$ для всех $\phi,\psi\in E(A)$. Внимание автора на класс BL_2 обратил профессор П.А. Крылов. Группы из класса BL_2 изучались в [2,5]. Отметим, что в [6-16] и в других работах автора рассматривались вопросы, связанные с возможностью продолжения гомоморфизмов абелевых групп.

Если $0 = A_0 \subseteq A_1 \subseteq \ldots \subseteq A_{n-1} \subseteq A_n = A$ — Е-центральный ряд, то получаем включения $A_i \subseteq Z_i$ и $L_i \subseteq A_{n-i+1}$, где $L_i = L_i(A)$. Ряд $L_1(A) \supseteq L_2(A) \supseteq \ldots$ назовем *нижним* Е-центральным рядом группы A. Из вышеприведенных включений следует, что в Е-разрешимой группе верхний и нижний Е-центральные ряды обрываются, причем их длины равны классу Е-разрешимости группы. В частности, в Е-разрешимой группе все ее Е-центральные ряды обрываются, минимальная длина таких рядов совпадает с классом Е-разрешимости группы.

Хотя верхний и нижний Е-центральные ряды Е-разрешимой группы имеют одинаковую длину, они сами не обязаны совпадать. Так, в вышеприведенном примере Е-разрешимой группы $A = B \oplus C \oplus D$ верхний Е-центральный ряд имеет вид $0 \subset C \oplus D \subset A$, а нижний $-0 \subset \operatorname{Hom}(B,C)B \subset A$.

Некоторые свойства нильпотентных некоммутативных групп переносятся на Е-разрешимые группы.

Теорема 1.4. Для группы А равносильны условия:

- 1) A E-разрешимая группа класса n;
- 2) $Z_n(A) = A \ u \ Z_{n-1}(A) \neq A$;
- 3) $L_{n+1}(A) = 0$, HO $L_n(A) \neq 0$.

Доказательство. 1) \Rightarrow 2) Так как $L_i \subseteq Z_{n-i+1}$, то $L_1 = A \subseteq Z_n$, т.е. $Z_n = A$. Допустим, что $Z_{n-1} = A$. Тогда $L_2 = A' \subseteq Z_{n-2}$ и по индукции $L_i \subseteq Z_{n-i}$. Значит, $L_n = A^{(n-1)} \subseteq Z_0 = 0$. Противоречие с условием $A^{(n-1)} \neq 0$.

 $2)\Rightarrow 3)$ Имеем $L_{n+1}\subseteq Z_0=0$. Если $L_n=0$, то $L_{n-1}\subseteq Z_1$. По индукции $L_{n-k}\subseteq Z_k$ или $L_k\subseteq Z_{n-k}$. Отсюда $L_1=A\subseteq Z_{n-1}$. Противоречие. Импликация $3)\Rightarrow 1$) очевидна.

Теорема 1.5. Если A — E-разрешимая группа класса n, то для любой ее подгруппы H ряд последовательных E-нормализаторов достигает A не позже чем через n шагов. B частности, всякая ki-подгруппа E-разрешимой группы входит B некоторый E-центральный ряд.

Доказательство. Обозначим $H_0 = H$, $H_{i+1} = N(H_i)$. Достаточно проверить, что $Z_i \subseteq H_i$. Для i = 0 это очевидно, а далее имеем $Z_{i+1} = N(Z_i) \subseteq N(H_i) = H_{i+1}$. Оставшееся утверждение для ki-подгрупп следует из того, что если $H \le \text{ki } A$, то $H \cap Z_i \le \text{ki } A$, $H \cap Z_{i+1} \subseteq N(H \cap Z_i)$ и $H \subseteq N(H_i)$.

ki-подгруппу H группы A назовем E-малой, если из A = H + S, где S — некоторая ki-подгруппа, следует, что S = A.

Элемент $x \in A$ назовем Е-*необразующим* группы A, если $\overline{\langle x \rangle}$ — Е-малая подгруппа. Очевидно, что любая кі-подгруппа, содержащаяся в Е-малой подгруппе, является Е-малой; сумма конечного числа Е-малых подгрупп является Е-малой

подгруппой. В силу сказанного сумма всех E-малых подгрупп совпадает с множеством E-необразующих элементов группы A.

Обозначим через C(A) пересечение всех максимальных ki-подгрупп группы A, если они существуют, и C(A) = A в противном случае.

Лемма 1.6. Множество S всех E-необразующих элементов группы A совпадает c подгруппой C(A).

Доказательство. $S \subseteq C(A)$. Если A не содержит максимальных ki-подгрупп, то утверждение очевидно. Пусть теперь $x \in S$ и H — максимальная ki-подгруппа в A. Если $x \notin H$, то $\overline{\langle x \rangle} + H = A$ и $H \neq A$. Это противоречит включению $x \in S$.

 $C(A)\subseteq S$. Пусть, напротив, существует элемент $x\in C(A)$ и $B\le \mathrm{ki}\ A$, такие, что $B\ne A$, но $\overline{\langle x\rangle}+B=A$. По лемме Цорна найдется ki -подгруппа H группы A, максимальная среди ki -подгрупп, содержащих B и не содержащих x. Ясно, что H — максимальная ki -подгруппа. Но тогда $x\in C(A)\subseteq H$. Противоречие.

Теорема 1.7. Если A — Е-разрешимая группа и H — ее ki-подгруппа с условием H+A'=A, то H=A. В частности, $A'\subseteq C(A)$.

Доказательство. Положим $H_i = H + Z_i, \ i = 0,1,2,\dots$ Пусть $H_m \subset A$ и $H_{m+1} = A$. Тогда $A' = [A,A] = [H,A] + [Z_{m+1},A] \subseteq H + Z_m = H_m$. Откуда $H + A' \subseteq H_m \subset A$. Противоречие. Включение $A' \subseteq C(A)$ следует из леммы 1.6.

кі-подгруппу P группы A назовем Е-*полупервичной*, если для любой подгруппы B группы A из включения $[B,A] \subseteq P$ следует, что $B \subseteq P$. Отметим, что включение $[B,A] \subseteq P$ эквивалентно включению $[\overline{B},A] \subseteq P$.

Пересечение всех Е-полупервичных подгрупп группы A обозначим через P(A). Из определения следует, что $Z(A) \subseteq P(A)$, в частности, A = P(A) для Е-разрешимой группы A.

Элемент a группы A назовем cmporo E-нильпотентным, если любой последовательности $\{\alpha_n \in E(A) \mid n \in \mathbf{N}\}$ найдется такой номер m, что $[\alpha_{2m-1}, \alpha_{2m}] \dots$ $[\alpha_1, \alpha_2] a = 0$.

Следующий результат является аналогом характеризации Левицкого первичного радикала кольца [17, предложение 26.5].

Теорема 1.8. P(A) состоит из строго E-нильпотентных элементов.

Доказательство. Пусть $a \notin P(A)$. Поэтому $a \notin P$ для некоторой Е-первичной подгруппы P. Тогда $[\langle a \rangle_{\mathcal{A}}] \nsubseteq P$, т.е. существует такой элемент $a_1 \in [\langle a \rangle_{\mathcal{A}}]$, что $a_1 \notin P$. Если $a_n \notin P$, то $[\langle a_n \rangle_{\mathcal{A}}] \nsubseteq P$. Значит, существует $a_{n+1} \in [\langle a_n \rangle_{\mathcal{A}}]$ со свойством $a_{n+1} \notin P$. В частности, элемент a не является строго Е-нильпотентным.

Обратно, пусть элемент a не является строго Е-нильпотентным, и пусть $T = \{a_n \mid n = 0,1,\ldots\}$ — такая последовательность элементов группы A, что $a_0 = a$ и $0 \neq a_{n+1} \in [\langle a_n \rangle, A]$ для каждого n. Тогда $0 \notin T$ и по лемме Цорна существует кі-подгруппа P, максимальная среди кі-подгрупп, не пересекающихся с T. Пусть теперь B — такая подгруппа в A, что $B \nsubseteq P$. В силу выбора подгруппы P имеем $(\overline{B} + P) \cap T \neq \emptyset$. Если теперь $a_n \in \overline{B} + P$, то $a_{n+1} \in [\overline{B} + P, A] = [\overline{B}, A] + [P, A]$. Поскольку $[P,A] \subseteq P$, то $[\overline{B},A] \nsubseteq P$. Значит, и $[B,A] \nsubseteq P$. Таким образом, P — Е-полупервичная подгруппа и $a_0 = a \notin P$. Следовательно, $a \notin P(A)$.

Поскольку $Z(A) \subseteq P(A)$, то условие P(A) = 0 влечет Z(A) = 0. Верно и обратное утверждение. Действительно, пусть $a_0 = a \neq 0$. По условию найдутся такие

 $\alpha_n, \beta_n \in E(A)$, что $a_{n+1} = [\alpha_n, \beta_n] a_n \neq 0$, n = 0, 1, ..., т.е. элемент a не является строго Е-нильпотентным. Из теоремы 1.8 следует также, что если P(A) = 0, то 0 — единственная среди подгрупп H группы A со свойством $L_n(H) = 0$ для некоторого n, где $L_n(H) = [L_{n-1}(H), A]$ при $n \geq 2$, а $L_1(H) = H$.

§ 2. Е-разрешимые группы класса 2

Лемма 2.1. Пусть $A = \bigoplus_{j \in I} A_j, |I| > 1$. Тогда:

- 1) если $A_j \le$ fi A для каждого $j \in I$, то группа A E-разрешима класса ≤ 2 в том и только в том случае, когда каждая A_j Е-разрешимая группа класса ≤ 2 , причем если кольцо $E(A_j)$ некоммутативно хотя бы для одного $j \in I$, то A Е-разрешимая группа класса 2;
- 2) если A E-разрешимая группа класса 2, то α_i ($Hom(A_j, A_i) A_j$) = 0 для любого $\alpha_i \in Hom(A_i, A_k)$, где $j, k \in I \setminus \{i\}$;
 - 3) в группе без кручения А любая ki-подгруппа ранга 1 лежит в Е-центре.

Доказательство. 1) очевидно. 2) Пусть θ — проекция A на $\bigoplus_{k \in I \setminus \{i\}} A_k$ и $\gamma a = g \in A_i$, где $a \in A_j$, $\gamma \in \text{Hom } (A_j, A_i)$. Пусть теперь $f \in E(A)$ — такой, что $f \mid A_j = \gamma$, $f \mid A_i = \alpha_i$ и $f \mid A_s = 0$ при $s \neq j$, i. Имеем $[\theta, f]g = \alpha_i g = \alpha_i \gamma a$, $[\theta, f]a = -\gamma a = -g$. Следовательно, $[\theta, f]^2 a = -\alpha_i \gamma a = 0$. Откуда $\alpha_i(\text{Hom } (A_j, A_i)A_j) = 0$ в силу произвольности γ и a.

3) Пусть $B \le \operatorname{ki} A$, r(B) = 1, $a \in B$ и $G = \langle B \rangle_*$ — чистая подгруппа в A, порожденная B. Если $G \le \operatorname{fi} A$, то утверждение очевидно. Допустим, что $x = \alpha a \notin G$ для некоторого $\alpha \in E(A)$. Если теперь $\beta \in E(A)$, то $[\alpha,\beta]a \in G$. Значит, $n[\alpha,\beta]a = ma$ для некоторых $n,m \in \mathbb{Z}$, причем $n \ne 0$. Допустим, что $m \ne 0$. Тогда $mx = m\alpha a = n\alpha[\alpha,\beta]a = n[\alpha,\alpha\beta]a \in G$. Противоречие. Если же $[\alpha,\beta]a = 0$ для всех $\beta \in E(A)$, то и $[\alpha,\beta]G = 0$, т.е. $G \subseteq Z(A)$.

Если A не является группой без кручения, то утверждение п. 3) леммы 2.1 в общем случае не справедливо. Например, пусть $o(a)=p,\ o(b)=p^3,\ A=\langle a\rangle\oplus\langle b\rangle$ и $H=\langle a+pb\rangle$. Можно непосредственно проверить, что $H\leq$ кі A (см. пример 2 в [1]). Пусть $\gamma(a)=p^2b$ и $\gamma\mid\langle b\rangle=0$. Тогда если π – проекция группы A на $\langle b\rangle$, то $[\pi,\gamma](a+pb)=(\pi\gamma-\gamma\pi)(a+pb)=p^2b\neq 0$.

Доказательство. Пусть θ : $A \to G$ — проекция, а $f \in E(A)$ — такой, что $f \mid B = \beta$, $f \mid G = 1_G$. Тогда если $b \in B$, то $[\theta, f]b = \beta b \in A'$, что ввиду $B' \subseteq A'$ доказывает необходимость.

Достаточность. Пусть π : $A \to B$, θ : $A \to G$ – проекции и $\alpha, \beta, \gamma, \delta \in E(A)$. Имеем $[\gamma, \delta] = (\pi + \theta)[\gamma, \delta](\pi + \theta) = \pi[\gamma, \delta]\pi + \theta[\gamma, \delta]\pi + \theta[\gamma, \delta]\theta$

(учтено, что $\pi[\gamma,\delta]\theta=0$). Здесь можно считать, что $\theta[\gamma,\delta]\theta\in E(G)$. Поэтому ввиду вполне инвариантности подгруппы G осталось проверить действие $[\alpha,\beta][\gamma,\delta]$ на B. Если $b\in B$, то $[\gamma,\delta]b=[\pi\gamma,\pi\delta]b+\theta\gamma(\pi\delta b)-\theta\delta(\pi\gamma b)+[\theta\gamma,\theta\delta]b$. Последние три слагаемые принадлежат следу B в G, поэтому они аннулируются при действии $[\alpha,\beta]$.

Далее $[\pi\alpha,\pi\beta][\pi\gamma,\pi\delta]b \in B'' = 0$. Следовательно,

$$[\alpha,\beta][\gamma,\delta]b = \theta\alpha(\pi\beta[\pi\gamma,\pi\delta]b) - \theta\beta(\pi\alpha[\pi\gamma,\pi\delta]b) + [\theta\alpha,\theta\beta]([\pi\gamma,\pi\delta]b) = 0,$$

поскольку, ввиду $\pi \alpha | B, \pi \beta | B \in E(B)$, все эти слагаемые принадлежат образу G-подгруппы $[\pi \gamma, \pi \delta] B$.

Лемма 2.3. Пусть $A = \bigoplus_i \in {}_IA_i \ u \mid I \mid > 1$. Тогда:

- 1) [2, лемма 4] $A \in BL_2$ в том и только в том случае, когда все $A_i \in BL_2$, $\alpha_i(\operatorname{Hom}(A_j,A_i)A_j)=0$, $[\varphi_i,\psi_i](\operatorname{Hom}(A_j,A_i)A_j)=0$ и $\beta_i(A_i')=0$ для любых $\alpha_i,\ \beta_i \in \operatorname{Hom}(A_i,A_k)$ и $\varphi_i,\psi_i \in E(A_i)$, где $j,k \in I\setminus\{i\}$.
- 2) Если $A=\oplus_i\in {}_IA_i,\ |I|>1,\ mo\ A-$ E-разрешимая группа класса ≤ 2 в том и только в том случае, когда каждая A_i- E-разрешимая группа класса ≤ 2 , $\alpha_i(\operatorname{Hom}(A_j,A_i)A_j)=0,\ [\phi_i,\psi_i](\operatorname{Hom}(A_j,A_i)A_j)=0$ и $\beta_i(A_i')=0$ для любых $\alpha_i,\ \beta_i\in \operatorname{Hom}(A_i,A_k)$ и $\phi_i,\psi_i\in E(A_i),$ где $j,k\in I\setminus \{i\},$ причем если $\operatorname{Hom}(A_j,A_i)\neq 0$ хотя бы для одной пары (i,j) или $A_i'\neq 0$ хотя бы для одной группы $A_i,$ то A- E-разрешимая группа класса 2.
- 3) Если $A \in \operatorname{BL}_2$ и каждая A_i является $\operatorname{E-paspeuumoй}$ группой класса ≤ 2 , то и сама группа A $\operatorname{E-paspeuuma}$ класса ≤ 2 .

Доказательство. 2) Необходимость вытекает из лемм 2.1, 2.2.

Достаточность. Пусть $B_j = \bigoplus_{i \in I \setminus \{j\}} A_i$, $\pi: A \to A_j$ и $\theta: A \to B_j$ – проекции, а $\alpha, \beta, \gamma, \delta \in E(A)$. Если $a \in A_j$, то

$$\begin{split} [\gamma,\delta]a &= [(\pi+\theta)\gamma,(\pi+\theta)\delta]a = [\pi\gamma,\pi\delta]a + [\pi\gamma,\theta\delta]a + [\theta\gamma,\pi\delta]a + [\theta\gamma,\theta\delta]a = \\ &= [\pi\gamma,\pi\delta]a + \pi\gamma\theta\delta a - \theta\delta\pi\gamma a + \theta\gamma\pi\delta a - \pi\delta\theta\gamma a + \theta\gamma\theta\delta a - \theta\delta\theta\gamma a \;. \end{split}$$

Здесь $\theta \delta a \in \text{Hom } (A_j, B_j) A_j$ и $\pi \gamma \mid B_j \in \text{Hom } (B_j, A_j)$, поэтому $\pi \gamma \theta \delta a = 0$. Аналогично $\pi \delta \theta \gamma a = 0$. Далее

$$θδπγα$$
, $θγπδα$, $θγθδα$, $θδθγα ∈ Hom (A_i,B_i) A_i ,$

а поскольку в скобках $[\pi\alpha,\theta\beta]$, $[\theta\alpha,\pi\beta]$ в качестве множителей входят гомоморфизмы из Нот (B_j,A_j) , то перечисленные элементы аннулируются при действии этих скобок. С учетом того, что $[\pi\alpha,\pi\beta][\pi\gamma,\pi\delta]a=0$ и $[\theta\alpha,\theta\beta](\text{Hom }(A_j,B_j)A_j)=0$, окончательно получаем $[\alpha,\beta][\gamma,\delta]a=0$.

Из лемм 2.1, 2.3 следует, что всякая Е-разрешимая группа не содержит прямые слагаемые, разложимые в прямые суммы изоморфных групп. Поэтому делимая группа D является Е-разрешимой тогда и только тогда, когда все ее ненулевые p-компоненты имеют ранг 1, а часть без кручения либо нулевая, либо также имеет ранг 1 (такая группа $D \in BL_2$).

3) вытекает из 1) и 2).

Теорема 2.4. Если A — Е-разрешимая группа класса ≤ 2 , то каждая ее ненулевая p-компонента A_p есть либо циклическая группа, либо прямая сумма циклической группы B_p и группы Z_{p^∞} , причем в последнем случае, если $B_p \neq 0$, то $A/A_p = p(A/A_p)$.

Доказательство. Вытекает из лемм 2.1 и 2.3.

Следствие 2.5. Если A — периодическая группа, то следующие условия эквивалентны:

- 1) A E-разрешимая группа класса ≤ 2;
- $2) A \in BL_2;$
- 3) каждая ненулевая р-компонента группы A есть либо циклическая группа, либо прямая сумма некоторой (возможно, нулевой) циклической группы и группы

 Z_{p^∞} . В частности, если A редуцированна, то ее кольцо эндоморфизмов коммутативно.

Теорема 2.6. Если $0 \neq D$ — делимая часть группы A, $A = B \oplus D$, то A — Еразрешимая группа класса ≤ 2 тогда и только тогда, когда

- 1) каждая группа В,Д является Е-разрешимой класса ≤2;
- 2) Е-коммутант В' группы В периодичен;
- 3) если обе подгруппы D_p , $B_p \neq 0$, то $B/B_p = p(B/B_p)$;
- 4) $0 \neq t(D) \neq D$ влечет периодичность B, в этом случае A имеет строение $A = (\bigoplus_{p \in \Pi} A_p) \oplus D_0$, где Π некоторое множество простых чисел, каждая A_p есть или циклическая группа, или прямая сумма некоторой (возможно, нулевой) циклической p-группы и группы $Z_{p^{\infty}}$, а $D_0 \cong \mathbf{Q}$.

Доказательство. Необходимость. Если $0 \neq b \in B$ — элемент бесконечного порядка, то ввиду инъективности группы D найдется гомоморфизм α : $B \to D$ со свойством $\alpha b \neq 0$, причем если часть без кручения D_0 группы D отлична от нуля, то α можно выбрать так, чтобы $\alpha b \in D_0$ и $\gamma \alpha b \neq 0$ для некоторого $\gamma \in \text{Hom } (D_0, Z_{p^\infty})$. Поэтому в силу леммы 2.1 условие $0 \neq t(D) \neq D$ влечет периодичность B. Наконец, если $B_p \neq 0$, то по теореме 2.4 B_p — циклическая группа, поэтому $B = B_p \oplus E_{(p)}$ для некоторой подгруппы $E_{(p)} \subseteq B$. Если теперь $pE_{(p)} \neq E_{(p)}$, то при условии $D_p \neq 0$ найдется ненулевая композиция гомоморфизмов $E_{(p)} \to B_p \to D_p$, что противоречит лемме 2.1.

Достаточность. Пусть $0 \neq t(D) \neq D$. Имеем $A = B \oplus t(D) \oplus D_0$, где $B \oplus t(D) \leq \mathrm{fi}\ A$, E(B) и E(t(D)) — коммутативные кольца. Согласно лемме 2.2, $B \oplus t(D)$ — Е-разрешимая группа класса 2. Поскольку след группы D_0 в $B \oplus t(D)$ содержится в подгруппе t(D), а E(t(D)) и $E(D_0)$ — коммутативные кольца, то из леммы 2.2 следует, что A — Е-разрешимая группа класса 2. Если же $D_0 = 0$, то E(D) — коммутативное кольцо и $D \leq \mathrm{fi}\ A$. Далее, если $B = B_p \oplus E_{(p)}$, то по условию $pE_{(p)} = E_{(p)}$ при $D_p \neq 0$.

В силу леммы 1.1 $B'=(E_{(p)})'$ и, значит, $(B')_p=0$. Откуда ввиду периодичности B' вытекает, что $\beta(B')=0$ для каждого $\beta\in \mathrm{Hom}\,(B,D)$. Поэтому по лемме 2.2 A- Е-разрешимая группа класса ≤ 2 . Пусть, наконец, D- группа без кручения. Тогда $r(D)=1,\ D\leq \mathrm{fi}\ A,\ E(D)-$ коммутативное кольцо и, так как B'- периодическая группа, $\beta(B')=0$ для каждого $\beta\in \mathrm{Hom}\,(B,D)$, следовательно, по лемме 2.2 вновь A Е-разрешима класса ≤ 2 . Заметим, что если $D\cong \mathbf{Q}$, а B- периодическая группа с коммутативным кольцом эндоморфизмов, то и кольцо E(A) также коммутативно, т.е. в теореме возможен случай, когда A- разрешимая группа класса 1.

Следствие 2.7. Если $0 \neq D -$ делимая часть группы A, $A = B \oplus D$ и $0 \neq B -$ группа без кручения, то A -Е-разрешимая группа класса 2 в том и только в том случае, когда E(B), E(D) -коммутативные кольца.

Доказательство. Необходимость следует из теоремы 2.6, а достаточность из леммы 2.2. Поскольку $\text{Hom}(B,D) \neq 0$, то A - E-разрешимая группа класса 2.

Отметим, что делимая группа $D=t(D)\oplus D_0$ имеет коммутативное кольцо эндоморфизмов E(D) тогда и только тогда, когда либо t(D)=0, а $D_0\cong {\bf Q}$, либо $D_0=0$, а $D_p\cong Z_{p^\infty}$ для каждого p с условием $D_p\neq 0$.

Следствие 2.8. Пусть $A = t(A) \oplus R$ — расщепляющаяся смешанная группа с ненулевой делимой частью $D = t(D) \oplus D_0$. Запишем A в виде $A = T \oplus B \oplus t(D) \oplus D_0$, где

 $t(A) = T \oplus t(D)$. Группа A E-разрешима класса ≤ 2 в том и только в том случае, когда выполняются следующие условия:

- 1) $t(D) \cong \bigoplus_{p \in \Pi} Z_{p^{\infty}}$, $a r(D_0) \leq 1$;
- 2) $T = \bigoplus_{p \in \Pi_1} T_p$, где каждая T_p ненулевая циклическая p-группа;
- 3) кольцо E(B) коммутативно и pB = B при $p \in \Pi' = \Pi \cap \Pi_1$;
- 4) $ecnu\ B, D_0 \neq 0, mo\ t(D) = 0.$

Доказательство. Необходимость следует из теоремы 2.6. Достаточность. Имеем $t(A) = T \oplus t(D) \leq$ fi A. Если $D_0 = 0$, то обозначим через G — след группы B в t(A). G можно записать в виде $G = G_1 \oplus G_2$, где $G_1 = \bigoplus_{p \in \Pi_1 \setminus \Pi} G_p \subseteq T$, $G_2 = \bigoplus_{p \in \Pi_1 \setminus \Pi} G_p \subseteq t(D)$ (pG = G при $p \in \Pi'$, поэтому $G_p \cap T_p = 0$ для таких p). Поскольку $\bigoplus_{p \in \Pi_1 \setminus \Pi} T_p \leq$ fi t(A) и кольца E(T), E(t(D)) коммутативны, то $[\phi, \psi]G = 0$ для любых ϕ , $\psi \in E(t(A))$. Поэтому A — E-разрешимая группа класса ≤ 2 по лемме 2.2. Если же $B \neq 0$ и $D_0 \cong \mathbf{Q}$, то $A = B \oplus T \oplus D_0$, где $T \oplus D_0 \leq \mathbf{fi}$ A и E(B), $E(T \oplus D_0)$ — коммутативные кольца. Вновь по лемме 2.2 A — E-разрешима класса ≤ 2 . Наконец, при B = 0 имеем $A = T \oplus D$, где E(T), E(t(D)) — коммутативные кольца и D — E-разрешимая группа класса ≤ 2 . Поэтому и E этом случае E — E-разрешимая группа класса E E0.

Теорема 2.9. 1) Пусть A – вполне разложимая группа без кручения, A = $B \oplus D$, где D – делимая часть группы A. Тогда A – E-разрешимая группа класса ≤ 2 в том и только в том случае, когда:

- а) если $D \neq 0$, то r(D) = 1, а B прямая сумма групп ранга 1 несравнимых между собой типов;
- б) если D=0, то $A=\bigoplus_{i\in I}A_i$, где типы прямых слагаемых ранга 1 групп A_i и A_j не сравнимы при различных i и j, причем либо $r(A_i)=1$, либо $A_i=B_i\oplus C_i$, $r(B_i)=1$, C_i прямая сумма групп ранга 1 несравнимых между собой типов больших $t(B_i)$.
- 2) Пусть A сепарабельная (векторная группа) без кручения, A = $B \oplus D$, где D делимая часть группы A. Тогда A E-разрешимая группа класса ≤ 2 в том и только в том случае, когда:
- а) если $D \neq 0$, то r(D) = 1, а B прямая сумма (прямое произведение) групп ранга 1 несравнимых между собой типов;
- б) если D=0, то $A=\bigoplus_{i\in I}A_i$ $(A=\prod_{i\in I}A_i)$, типы прямых слагаемых ранга 1 групп A_i и A_j не сравнимы при различных i и j, причем либо $r(A_i)=1$, либо $A_i=B_i\oplus C_i$, $r(B_i)=1$, C_i сепарабельная (векторная) группа, типы прямых слагаемых ранга 1 которой несравнимы между собой и больше $t(B_i)$.

Доказательство. 1) Необходимость следует из леммы 2.2, поскольку для прямого слагаемого $N_1 \oplus N_2 \oplus N_3$ группы A, где $r(N_i) = 1$, невозможны следующие соотношения для типов: $t(N_1) = t(N_2)$ или $t(N_1) \le t(N_2) \le t(N_3)$. Достаточность в случае а) вытекает из леммы 2.2, поскольку $D \le$ fi A и E(B), E(D) — коммутативные кольца. В случае б) достаточность следует из того, что $A_i \le$ fi A, где согласно лемме 2.2 A_i — E-разрешимые группы класса ≤ 2 .

2) Прямые слагаемые сепарабельных групп являются сепарабельными группами [3, теорема 87.5]. Далее, если $\Omega(A)$ — множество типов всех прямых слагаемых ранга 1 группы A, то $\Omega(A)$ можно разбить на классы эквивалентности

 $\Omega(A) = \bigcup_{i \in I} \Omega_i$, где типы $s, t \in \Omega(A)$ считаются эквивалентными, если существуют $t_1, \ldots, t_n \in \Omega(A)$, такие, что типы t_i и t_{i+1} сравнимы для всех $i=1,\ldots,n$ (здесь $t_0 = s, t_{n+1} = t$). В этом случае $A = \bigoplus_{i \in I} A_i$, $\Omega(A_i) = \Omega_i$ и $A_i \leq \text{fi } A$, т.е. типы из $\Omega(A_i)$ и $\Omega(A_j)$ не сравнимы при $i \neq j$. Для векторных групп можно использовать лемму: если η — ненулевой гомоморфизм векторной группы $V = \prod_{i \in I} R_i$ в векторную группу $W = \prod_{j \in J} S_j$ (R_i и S_j — группы ранга 1), то $t(R_i) \leq t(S_j)$ для некоторых $i \in I$ и $j \in J$ [3, лемма 96.1]. С учетом этих фактов оставшиеся утверждения доказываются аналогично 1).

Теорема 2.10. Пусть A — копериодическая группа, D — ее делимая часть, $A = B \oplus D$, $D = t(D) \oplus D_0$. Тогда A — E-разрешимая группа класса ≤ 2 в том и только в том случае, когда A алгебраически компактна, $D = (\bigoplus_{p \in \Pi} Z_{p^{\infty}}) \oplus D_0$, где Π — некоторое множество простых чисел, $r(D_0) \leq 1$ и, кроме того:

- 1) если $0 \neq t(D) \neq D$, то $B = \bigoplus_{p \in \Pi_1} B_p$, каждая B_p циклическая p-группа и Π_1 некоторое конечное множество простых чисел;
- 2) если t(D)=0 или $D_0=0$, то $B=G\oplus C$, $G=\prod_{p\in\Pi_1}B_p$, каждая B_p является (при $\Pi_1\neq\varnothing$) ненулевой циклической p-группой, $C\cong\prod_{p\in\Pi_2}\hat{Z}_p$, Π_1 и Π_2 такие множества простых чисел, что $\Pi\cap\Pi_1\cap\Pi_2=\varnothing$, причем если $D\neq 0$, то множество $\Pi_1\cap\Pi_2$ конечно.

Доказательство. Необходимость. Имеем $A^1 = D \oplus B^1$. Если $B_p \neq 0$, $B = B_p \oplus E_{(p)}$, то $B^1 = E_{(p)}^1$. Отсюда следует, что $B^1 -$ делимая подгруппа без кручения в B и, значит, $B^1 = 0$, $A^1 = D$. Поэтому группа A алгебраически компактна [3, предложение 54.2]. Если $0 \neq t(D) \neq D$, то по теореме 2.6 B — периодическая группа. Всякая периодическая алгебраически компактная группа ограниченная [3, следствие 40.3], это доказывает 1).

2) Замыкание $G=(t(B))^-$ в **Z**-адической топологии периодической части t(B) выделяется в B прямым слагаемым, $B=G\oplus C$, $(\Pi_1=\{p\in P\mid B_p\neq 0\})$. Если D_p , $B_p\neq 0$, то pC=C, поэтому $\Pi\cap\Pi_1\cap\Pi_2=\varnothing$. Если множество $\Pi_1\cap\Pi_2$ бесконечно, то след группы C в G является смешанной группой, а это при условии $D\neq 0$ в силу леммы 1.1 противоречит теореме 2.6.

Достаточность. В случае 1) A — Е-разрешимая группа класса \leq 2 по теореме 2.6. Если выполнены условия 2), то $G \leq$ fi $(G \oplus C)$ и E(G), E(C) — коммутативные кольца. Поэтому по лемме 2.2 $G \oplus C$ — Е-разрешимая группа класса \leq 2. Пусть $D \neq$ 0. По лемме 1.1 $(G \oplus C)'$ = Hom(C,G)C. Так как множество $\Pi_1 \cap \Pi_2$ конечно, то $(G \oplus C)'$ — периодическая группа и $\beta(G \oplus C)'$ = 0 для каждого $\beta \in$ Hom $(G \oplus C,D)$ в силу условия $\Pi \cap \Pi_1 \cap \Pi_2 = \emptyset$. Следовательно, по лемме 2.2 A — Е-разрешимая группа класса \leq 2.

В утверждениях 2.7 - 2.10 условие A - E-разрешимая группа класса ≤ 2 равносильно условию $A \in \text{BL}_2$, это можно вывести из их доказательств или сравнивая с соответствующими результатами из [2, 5].

В заключение отметим, что помимо коммутаторно инвариантных подгрупп в [18-21] автор изучал проективно инвариантные подгруппы, т.е. подгруппы, инвариантные относительно проекций.

ЛИТЕРАТУРА

- 1. *Чехлов А.Р.* О свойствах центрально и коммутаторно инвариантных подгрупп абелевых групп // Вестник ТГУ. Математика и механика. 2009. № 2(6). С. 85 99.
- 2. *Чехлов А.Р.* О скобке Ли эндоморфизмов абелевых групп // Вестник ТГУ. Математика и механика. 2009. № 2(6). С. 78 84.
- 3. Фукс Л. Бесконечные абелевы группы. М.: Мир, 1974. Т. 1; 1977. Т. 2.
- 4. Пунинский Г.Е., Туганбаев А.А. Кольца и модули. М.: Союз, 1998.
- Уехлов А.Р. Об абелевых группах с нормальным кольцом эндоморфизмов // Алгебра и логика. 2009. Т. 48. № 4. С. 520 – 539.
- 6. *Чехлов А.Р.* О некоторых классах абелевых групп // Абелевы группы и модули. Томск, 1984. С. 137 152.
- 7. *Чехлов А.Р.* Квазисервантно инъективные абелевы группы без кручения // Матем. заметки. 1989. Т. 46. № 3. С. 93 99.
- 8. 8. *Чехлов А.Р.* Связные квазисервантно инъективные абелевы группы // Изв. вузов. Математика. 1989. № 10. С. 84 87.
- Чехлов А.Р. Вполне транзитивные группы конечного p-ранга // Алгебра и логика. 2001.
 Т. 40. № 6. С. 698 715.
- 10. *Крылов П.А.*, *Чехлов А.Р.* Абелевы группы без кручения с большим числом эндоморфизмов // Труды Института математики и механики. 2001. Т. 7. № 2. С. 194 207.
- 11. *Чехлов А.Р.* О прямых произведениях и прямых суммах абелевых QCPI-групп без кручения // Изв. вузов. Математика. 1990. № 4. С. 58 67.
- 12. *Чехлов А.Р.* Об абелевых СS-группах без кручения // Изв. вузов. Математика. 1990. № 3. С. 84-87.
- Чехлов А.Р. Об одном классе эндотранзитивных групп // Матем. заметки. 2001. Т. 69.
 № 6. С. 944 949.
- 14. *Чехлов А.Р.* О разложимых вполне транзитивных группах без кручения // Сиб. матем. журн. 2001. Т. 42. № 3. С. 714 719.
- Чехлов А.Р. О квазиполных смешанных группах // Фундамент. и прикл. матем. 2002.
 Т. 8. № 4. С. 1215 1224.
- Чехлов А.Р. О слабо квазисервантно инъективных группах // Матем. заметки. 2007.
 Т. 81. № 3. С. 434 447.
- 17. Фейс К. Алгебра: кольца, модули и категории. М.: Мир, 1979. Т. 2.
- 18. *Чехлов А.Р.* Свойства подгрупп абелевых групп, инвариантных относительно проекций // Вестник ТГУ. Математика и механика. 2008. № 1(2). С. 76 82.
- Чехлов А.Р. О подгруппах абелевых групп, инвариантных относительно проекций // Фундамент. и прикл. матем. 2008. Т. 14. № 6. С. 211 – 218.
- 20. *Чехлов А.Р.* О проективно инвариантных подгруппах абелевых групп // Вестник ТГУ. Математика и механика. 2009. № 1(5). С. 31 36.
- 21. *Чехлов А.Р.* Сепарабельные и векторные группы, проективно инвариантные подгруппы которых вполне инвариантны // Сиб. матем. журн. 2009. Т. 50. № 4. С. 942 953.

СВЕДЕНИЯ ОБ АВТОРЕ:

ЧЕХЛОВ Андрей Ростиславович — доктор физико-математических наук, профессор кафедры алгебры Томского государственного университета. E-mail: cheklov@math.tsu.ru

Статья принята в печать 22.12.2009 г.