2011 Математика и механика № 2(14)

УДК 512.623.5

Г.Г. Пестов, Е.А. Фомина

К ТЕОРИИ ДВУМЕРНО УПОРЯДОЧЕННЫХ ПОЛЕЙ

На основе заданного линейно упорядоченного поля построено семейство двумерно упорядоченных бесконечно узких полей.

Ключевые слова: двумерно упорядоченное поле, верхний конус, базис трансцендентности.

1. Двумерно упорядоченные поля

Эта работа является продолжением исследований, начатых в [1–3]. Другой (не эквивалентный) подход к теории двумерно упорядоченных полей представлен в работах Novoa L.G. [4]. Определение линейно упорядоченного множества в данной статье сформулировано, исходя из свойств расположения трёх точек на ориентированной прямой. Подобно этому, определение двумерно упорядоченного множества, используемое в данной статье, построено, исходя из свойств расположения пяти точек на ориентированной плоскости. Более подробное изложение приведено в [1]. Что касается подхода Novoa L.G. [4], то определение двумерно упорядоченного множества даётся через свойства множеств из 7 точек, что существенно затрудняет работу с этим определением. Далее мы всюду пользуемся определением двумерно упорядоченного множества, изложенным в [1].

Для удобства читателя приведём краткую сводку сведений о двумерно упорядоченных полях. Пусть в поле P задан двумерный порядок $\zeta(x,y,z)$. Говорят, что двумерный порядок $\zeta(x,y,z)$ согласован с алгебраическими операциями в поле P, если для всех $a,x,y,z\in P$, $a\neq 0$, выполнено $\zeta(a+x,a+y,a+z)=\zeta(ax,ay,az)=\zeta(x,y,z)$. Обозначим через P^u множество всех таких $x\in P$, что $\zeta(0,1,x)\geq 0$. Множество P^u назовём верхним конусом двумерного порядка $\zeta(x,y,z)$. Аналогично тому, как положительный конус в поле определяет линейный порядок в поле, верхний конус P^u определяет двумерный порядок в поле P. Обозначим через P_0 множество всех таких $x\in P$, что $\zeta(0,1,x)=0$. Можно сказать, что P_0 есть прямая, проходящая через точки P_0 и 1. Множество P_0 назовём базой двумерного порядка P_0 следующим образом. Фиксируем P_0 индуцирует линейный порядок P_0 следующим образом. Фиксируем P_0 примем, для определённости, что P_0 следующим образом. Фиксируем P_0 по полагаем P_0 по полагаем P_0 по порядка база P_0 является линейным порядком на P_0 . Относительно линейного порядка база P_0 является линейно упорядоченным полем (Подробности и доказательства см. в [1].) Введём ещё множе-

ство (открытый верхний конус) $P^u = \stackrel{\circ}{P}^u \setminus P_0$.

Пусть $a\!\in\!P$ — трансцендентный элемент над P_0 . Так как $P_0(a)\subset P$, то $P_0(a)$ как подполе двумерно упорядоченного поля также двумерно упорядочено. Сужение двумерного порядка $\zeta(x,y,z)$ на поле $P_0(a)$ будем по-прежнему обозначать через $\zeta(x,y,z)$, если это не вызовет недоразумения. Таким образом, в поле $P_0(a)$ задан двумерный порядок $\zeta(x,y,z)$, согласованный с алгебраическими операциями поля и

такой, что $a \in P^u$

Введём функции ϕ , ψ_a в поле $P_0(a)$:

Φ ункция ψ_a .

Пусть $x \in P_0[a]$. Положим

$$\psi_a(x) = \{ r \in P_0 | ra <_u x \}, \psi_a^+(x) = \{ r \in P_0 | ra >_u x \}.$$

Если $(\psi_a^-(x), \psi_a^+(x))$ есть фундаментальное сечение в P_0 , то элемент из \tilde{P}_0 , который производит это сечение, обозначим через $\psi_a(x)$.

Заметим, что если $x \in P_0$, то $\psi_a(x) = 0$.

Кроме того, ψ_a есть линейная функция, т.е.

$$\psi_a(\sum_{k=0}^n \lambda_k C_k) = \sum_{k=0}^n \lambda_k \psi_a(C_k)$$
, где $\lambda \in P_0$, $C_K \in P_0$ [a]

Φ ункция ϕ .

Пусть $x \in P_0[a]$. Положим

$$\phi^{-}(x) = \{ r \in P_0 | r < x \}, \ \phi^{+}(x) = \{ r \in P_0 | r > x \}.$$

Если $(\phi^-(x), \phi^+(x))$ есть фундаментальное сечение в P_0 , то элемент из \tilde{P}_0 , который производит это сечение, обозначим через $\phi(x)$.

Имеет место следующая

Теорема [1]. Пусть P есть 2-упорядоченное поле без бесконечно малых относительно базы P_0 . Если $a \in P$ есть предел последовательности элементов базы, aтрансцендентно над $P_0, f(x) \in P_0[x]$, то имеет место равенство

$$\psi_a(f(a)) = F'(\phi(a)) = \phi(F'(a)). \tag{1}$$

Равенство (1) позволяет задать верхний конус в кольце $P_0[a]$. В самом деле, если $x \in P_0[a]$, то x = f(a) для некоторого $f(x) \in P_0[x]$. Поэтому $\psi_a(x) = \psi_a(f(a)) =$ $=F'(\phi(a))=\phi(F'(a))$. Отсюда заключаем: $x\in \stackrel{\circ}{P}^{u}$, если и только если, F'(a)>0.

Так же: $x \in (-P^u)$, если и только если F'(a) < 0. Случай F'(a) = 0 невозможен, так как a трансцендентно над P_0 по условию.

Описанный метод позволяет построить верхний конус двумерного порядка в кольце $P_0[a]$.

2. Конструкция двумерного порядка в поле $P_0(a)$

1) Зададим теперь двумерный порядок на поле $P_0(a)$. Обозначим $K = P_0(a)$. Пусть $x \in K$. Тогда x = f(a), где $f(x) \in P_0(x)$.

Обозначим через K^u множество тех и только тех $x \in K$, для которых имеет место неравенство F'(a)>0.

Обозначим, как ранее, $K^u = K^u \setminus (-K^u)$.

2) В [1] доказан следующий критерий верхнего конуса двумерного порядка в поле.

Теорема. Пусть P есть поле характеристики нуль, P^{u} – его подмножество. Обозначим

 $P_0 = P^u \cap (-P^u)$, $\stackrel{\circ}{P}^u = P^u \setminus (-P^u)$. Для того чтобы P^u было верхним конусом 2-порядка на поле Р, необходимо и достаточно выполнение следующих четырёх условий:

(a)
$$P^{u} + P^{u} = P^{u}$$
,
(b) $P^{u} \cup (-P^{u}) = P$,

(b)
$$P^{u} \cup (-P^{u}) = P$$
.

(c)
$$(P^{u}\setminus\{0\})^{-1} = -P^{u}\setminus\{0\},$$

(d) если
$$a, c \in P^u, b \in \stackrel{\circ}{P}^u, ba^{-1}, cb^{-1} \in P^u, \text{ то } ca^{-1} \in P^u$$

Задание верхнего конуса единственным образом определяет 2-порядок в поле P[1].

Убедимся, что K^u есть верхний конус 2-порядка в поле K.

Проверим замкнутость множества K^u относительно сложения. Пусть $x,y \in K^u$. Тогда x = f(a),

F'(a) > 0, y = G(a), G'(a) > 0, где f(x), $G(x) \in P_0(x)$. Но тогда имеем $(f(x) + G(x))' \ge 0$ при x = a. Значит, $(x+y) \in K^u$.

Условия (b) и (c) выполняются очевидным образом.

Проверим выполнение условия (d) для K^u . Пусть x = f(a), y = G(a), z = H(a). Так как $x,z \in K^u$, $y \in K^u$, то выполнены неравенства $0 \le F'(a)$, 0 < G'(a), $0 \le H'(a)$. Поскольку элемент a трансцендентен над K, то имеют место строгие неравенства 0 < F'(a), 0 < G'(a), 0 < H'(a). Точно так же, из yx^{-1} , $zy^{-1} \in K^u$ заключаем

$$H'(a)G(a) > H(a)G'(a), G'(a)f(a) > G(a)F'(a),$$

откуда $((H(X)f(x))^{-1})'$ при x = a.

Это означает, что $zx^{-1} \in K^u$, что и требовалось.

Итак, свойство (в) выполнено. Таким образом, в поле $K=P_0(a)$ эффективно задан нетривиальный двумерный порядок.

Определение. Двумерно упорядоченное поле $< K, K^u >$ называется *бесконечно* узким, если все элементы поля бесконечно близки к его базе.

Иными словами, двумерно упорядоченное поле $< K, K^u > c$ базой K_0 называется бесконечно узким, если для всех x,b, где $x \in K^u, b \in K_0$, из b < x следует, что для всех натуральных n выполнено $(x-b)^n \in K^u$.

Легко, видеть, что поле $< K, K^u >$ есть бесконечно узкое поле.

3. Построение семейства бесконечно узких полей на линейно упорядоченном поле

Пусть P_0 есть линейно упорядоченное поле. Обозначим через \tilde{P}_0 топологическое замыкание поля P_0 . Как известно, линейный порядок с поля P_0 единственным образом переносится на поле \tilde{P}_0 . Пусть B есть базис трансцендентности поля \tilde{P}_0 над полем P_0 . Поле $K=P_0(B)$ как подполе поля \tilde{P}_0 линейно упорядочено. Пусть, наконец, задано произвольное отображение d: $B \rightarrow K$. Таким образом, для каждого $x \in B$ задано значение dx из K.

Каждому $x \in K$ сопоставим значение $dx \in K$ следующим образом. Если $x \in K$, то $x = f(a_1, ..., a_n)$, где $f(x_1, ..., x_n) \in K(x_1, ..., x_n)$. Теперь полагаем $dx = df(a_1, ..., a_n)$, где $df(a_1, ...a_n) = \sum_i \frac{\partial}{\partial x_i} f(a_1, ...a_n) da_i$.

Наконец, задаём верхний конус: $K^u = \{ f(a_1,...,a_n) \mid df(a_1,...,a_n) > 0 \}.$

Проверка условий (a) - (d) для этого множества выполняется аналогично проверке в предыдущем параграфе.

ЛИТЕРАТУРА

- 1. Пестов Г.Г. Двумерно упорядоченные поля. Томск: ТГУ, 2003.
- 2. Фомина Е.А. Об одном классе двумерно упорядоченных полей // Вестник Томского государственного университета. Математика и механика. 2008. № 3(4). С. 32–34.
- 3. *Пестов Г.Г.*, *Фомина Е.А.* Подполе *В* бесконечно близких к базе элементов // Вестник Томского государственного университета. Математика и механика. 2009. № 2(6).
- 4. *Novoa L.G.* Order characterization of the complex field // Can. Math. Bull. 1978. V. 21. No. 3. P. 313–318.

Статья поступила 24.06.2010 г.

Pestov G.G., Fomina E.A. TO THE THEORY OF TWO-DIMENSIONALLY ORDERED FIELDS. A family of two-dimensionally ordered infinitely narrow fields is constructed starting from a given linearly ordered field.

Keywords: 2-dimensionally ordered field, upper cone, transcendence basis

PESTOV German Gavrilovich (Tomsk State University)

E-mail: pppestov@mail.tomsknet.ru

FOMINA Elena Anatolyevna (Tomsk State Pedagogic University)

E-mail: ef@sibmail.com