№ 1(14)

УДК 621.391

В.К. Трофимов

РАВНОМЕРНОЕ ПО ВЫХОДУ КОДИРОВАНИЕ ДИСКРЕТНЫХ СТАЦИОНАРНЫХ ИСТОЧНИКОВ СООБЩЕНИЙ С НЕИЗВЕСТНОЙ СТАТИСТИКОЙ¹

Предложен метод универсального равномерного по выходу кодирования для множества дискретных стационарных источников. Получены оценки избыточности предложенного кодирования. Установлены необходимые и достаточные условия существования универсального равномерного по выходу кодирования.

Ключевые слова: кодирование, избыточность, стоимость кодирования.

Проблемы сжатия (кодирования) информации [1] относятся к фундаментальным в области инфокоммуникаций. Как отмечено в книги В.Г. Хорошевского [2], решение этих проблем значимо и при создании большемасштабных распределённых вычислительных систем. Методы сжатия информации в таких системах, как правило, используют параллельные информационно-вычислительные технологии.

Настоящая работа посвящена кодированию информации, порождённой источником, в классической постановке К. Шеннона [1]. Вопросы сжатия данных также рассматривались Ф.П. Тарасенко [3].

1. Основные определения. Постановка задачи

Пусть буквы конечного алфавита $A=\{a_1,a_2,\ldots,a_k\},\ 2\leq k<\infty$, порождаются источником θ . Мера, заданная на последовательности букв, порождаемой источником, определяет тип источника. Если буквы порождаются независимо, то источник называют бернуллиевским. В этом случае $P_{\theta}(a_j)=\theta_j,\ \theta_1+\theta_1+\ldots+\theta_k=1,$ где $P_{\theta}(a_j)$ – вероятность порождения буквы a_j источником θ . Если же появление очередной буквы зависит от предыдущей, то для условной вероятности $P_{\theta}(a_i/a_j)$ появления буквы a_i после a_j имеют место равенства $P_{\theta}(a_i/a_j)=\theta_{ij},\ \sum\limits_{i=1}^k\theta_{ij}=1,$ $j=\overline{1,k}$, и в этом случае источник называют марковским. Если появление очередной буквы зависит от s предшествующих букв, то условные вероятности $P_{\theta}\left(a_j/v\right)$ определяются равенствами $P_{\theta}(a_j/v)=\theta_{jv}$, где $v\in A^s$, источник θ называют марковским с памятью s. Следует отметить, что для любого слова s0 слова s1. Множество всех марковских источников с памятью s3 обозначим s4. Дискретный стационарный источник s4 задаётся

_

 $^{^1}$ Работа выполнена в рамках интеграционного проекта № 113 CO РАН, при поддержке РФФИ (гранты № 09-07-00095, 10-07-00157, 08-07-00022), Совета по грантам Президента РФ для поддержки ведущих научных школ (грант НШ-5176.2010.9) и в рамках государственного контракта № 02.740.11.0006 с Минобрнауки РФ.

всеми условными распределениями вероятностей $P_{\theta}(a_j/v) = \theta_{jv}$ порождения источником букв $a_j, \ j=\overline{1,k}$, при заданных предшествующих $v,\ V\in A^s$, s любое целое неотрицательное число, причём при любом заданном $V,\ v\in A^s$, $s=0,1,2,\ldots$, выполняется равенство $\theta_{v1}+\theta_{v2}+\cdots+\theta_{vk}=1$.

Если u — произвольное слово в алфавите A, то через $P_{\theta}(u)$ обозначим вероятность слова u, порождённого источником θ . Число |u| букв в слове u назовём его длиной. Энтропию источника θ обозначим $H(\theta)$ [4, 5]. Если θ — произвольный дискретный стационарный источник и $H(\theta)$ — его энтропия, то справедливо равенство [4, 5]: $H(\theta) = \lim_{s \to \infty} H_s(\theta)$.

Пусть Ω_{∞} — множество всех дискретных стационарных источников с конечной энтропией. Конечное полное префиксное множество слов T во входном алфавите назовём кодовым.

Пусть θ — произвольный источник из Ω_s , T — произвольное кодовое множество. Обозначим через $\theta(T)$ марковскую цепь, состояниями которой являются слова из T, а переходные вероятности $P_{\theta(T)}(u/v)$, $u,v\in T$, индуцируются источником θ . Будем рассматривать только марковские источники с памятью s, переходные вероятности которых строго положительны. Тогда для марковской цепи $\theta(T)$ существует стационарное распределение $P_{\theta(T)}^0(u)>0$, $u\in T$. Средняя длина слова $d(T,\theta)$ для множества T, как доказано в [6], равна

$$d(T,\theta) = \sum_{u \in T} P_{\theta(T)}^{0}(u)|u|.$$
 (1)

В этой же работе доказаны тождества Вальда, которые имеют вид

$$\sum_{u \in T} P_{\theta(T)}^{0}(u) \cdot r_{v}(u) = (d(T, \theta) - \hat{s} + 1)\theta_{0v}, \quad \sum_{u \in T} P_{\theta(T)}^{0}(u) \cdot r_{vi}(u) = (d(T, \theta) - s)\theta_{0v}\theta_{vi}, \quad (2)$$

где $r_v(u)$, $r_{vi}(u)$ — число вхождений блоков v, va_i , $v \in A^s$, соответственно в слово u , $\hat{s} = \max{(s,1)}$

Полубесконечная последовательность букв, порождаемая источником θ , однозначно разбивается на последовательность слов из фиксированного кодового множества T . Полученная последовательность слов из T с помощью отображения ϕ переводится в слова выходного алфавита B, который, не уменьшая общности, можно считать двоичным. Из неравенства Мак-Милана — Крафта [4,5] следует, что множество $\phi(T) = \{\phi(u),\ u \in T\}$ является префиксным. Если длины всех слов множеств $T(\phi(T))$ равны между собой, то говорят, что $T(\phi(T))$ состоит из блоков; в противном случае — из слов переменной длины. В зависимости от видов множеств T и $\phi(T)$ логически возможны следующие виды кодирований: блоки в слова переменной длины (обозначается BV; слова переменной длины в блоки (обозначается VB); слова переменной длины в слова переменной длины (обозначается VB); блоки в блоки (обозначается VB).

Среднее число букв выходного алфавита при кодировании типа σ , $\sigma = BV, VB, VV$, приходящихся на одну букву входного, назовём стоимостью кодирования и обозначим через $C_{\sigma}(T,\theta,\phi)$. Как доказано в [6], величина $C_{\sigma}(T,\theta,\phi)$ находится по формуле

$$C_{\sigma}(T, \theta, \varphi) = \frac{1}{d_{s}(T, \theta) - \hat{s} + 1} \sum_{u \in T} P_{\theta(T)}^{0}(u) |\varphi(u)|.$$
 (3)

Эффективность кодирования ϕ будем оценивать разностью между стоимостью кодирования $C_{\sigma}(T,\theta,\phi)$ и энтропией источника $H(\theta)$. Эта разность в дальнейшем называется избыточностью кодирования и обозначается $r_{\sigma}(T,\theta,\phi)$, т.е.

$$r_{\sigma}(T, \theta, \varphi) = C_{\sigma}(T, \theta, \varphi) - H(\theta). \tag{4}$$

Избыточностью универсального кодирования типа σ для множества источников Ω и с заданной сложностью N назовём величину $R_{\sigma}(N,\Omega)$

$$R_{\sigma}(N,\Omega) = \inf_{\substack{\phi \ \theta \in \Omega}} \sup_{\boldsymbol{\theta} \in \Omega} r_{\sigma}(T,\theta,\phi) . \tag{5}$$

Здесь нижняя грань берётся по всем кодированиям ϕ , для которых кодовое множество T имеет не более чем k^N слов. Построение хорошего кодирования при заданной сложности — основной вопрос при изучении передачи сообщений по каналу без шума.

Если множество источников Ω состоит из единственного источника, то мы имеем дело с кодированием известного источника, которое подробно изучено для различных типов кодирования, например, в работах [1, 3-5, 7-13]. Универсальное кодирование марковских источников различных типов также хорошо изучено [14 – 18]. Подробную библиографию по этому вопросу можно найти в [14, 17 – 19]. Особо отметим работу В.Ф. Бабкина, Ю.М. Штарькова [16], в которой изучалось BV-кодирование для стационарных источников. В частности, в этой работе было доказано, что существует последовательность BV -кодирований ϕ_N , такая, что для любого стационарного источника θ избыточность кодирования $r_{\scriptscriptstyle RV}(A^N, \theta, \phi_{\scriptscriptstyle N})$ стремится к нулю. В то же время легко показать, что при $N o \infty$ избыточность универсального кодирования множества всех стационарных источников $R_{BV}(N,\Omega_{\infty})$ стремится к бесконечности. Вопрос о равномерной сходимости $r_{BV}(A^N, \theta, \phi_N)$ в [16] не исследовался. Кодирование, построенное в [16], получило название слабоуниверсального кодирования. При построении слабоуниверсального ВУ-кодирования основная сложность состоит в определении отображения ϕ_N , так как область определения при таком кодировании определена — это множество всех слов длины N в алфавите A. При построении кодирования типа VB основная трудность состоит в конструировании области определения кодирования ϕ_N , т.е. в определении кодового множества T_N .

2. Равномерное по выходу кодирование марковских источников

В этом параграфе предложен метод кодирования марковских источников с памятью s, получена оценка избыточности предложенного метода и доказана его универсальность. При доказательстве основного утверждения параграфа нам потребуются следующие понятия и обозначения. Марковский источник θ связанности s задаётся начальным распределением вероятностей θ_{0v} появления буквы a_i после блока v, $a_i \in A$, $v \in A^s$.

На множестве источников Ω_s определим КТ-распределение $\omega(\theta)$ [14], которое задаётся формулой

$$\omega(\theta) = \left[\frac{r\left(\frac{k}{2}\right)}{k\pi^{\frac{k}{2}}}\right]^{k} \cdot \frac{1}{\sqrt{\prod_{v \in \mathcal{A}^{s}} \prod_{i=1}^{k} \theta_{vi}}},\tag{6}$$

Проинтегрировав вероятность слова u, порождённого источником θ , по множеству источников Ω_s , если на Ω_s задана плотность $\omega(\theta)$, получим [14]

$$\overline{P_s}(u) = \left[\frac{\Gamma\left(\frac{k}{2}\right)}{\frac{k}{k\pi^2}}\right]^{ks} \prod_{v \in A^s} \frac{\prod_{j=1}^k \Gamma\left(r_{v_j}\left(u\right) + \frac{1}{2}\right)}{\Gamma\left(r_v\left(u\right) + \frac{k}{2}\right)}.$$
 (7)

где $\Gamma(z)$ — гамма функция от z . Используя для функции $\Gamma(z)$ формулу Стирлинга, из (7) получим

$$-\log \overline{P_s}(u) = \sum_{v \in A^s} r_v(u) F_s(u) + \frac{k-1}{2} \sum_{v \in A^s} \log \hat{r}_v(u) + c, \qquad (8)$$

где $\hat{x} = \max(x, 1)$, $\log x = \log_2 x$, $\log 0 = 0$, $F_s(u)$ — квазиэнтропия u, определяемая равенством

$$F_{s}(u) = -\sum_{v \in A^{s}} \frac{r_{v}(u)}{|u| - s} \sum_{i=1}^{k} \frac{r_{vi}(u)}{r_{v}(u)} \log \frac{r_{vi}(u)}{r_{v}(u)}.$$

Сформулируем и докажем основное утверждение параграфа.

Теорема 1. Для любого фиксированного s, $0 \le s < \infty$, существует последовательность кодирований φ_N типа VB, для которых избыточность кодирования $r_{VB}(T_N, \theta, \varphi_N)$ при любом источнике θ , $\theta \in \Omega_s$, удовлетворяет неравенству

$$r_{VB}\left(\varphi_{N}, \theta, T_{N}\right) \leq \frac{k^{s}\left(k-1\right)+2}{2} \cdot \frac{\log d_{s}\left(T_{N}, \theta\right)+c}{d_{s}\left(T_{N}, \theta\right)},$$

где постоянная c не зависит ни от θ , ни от T_N .

Доказательство. Как уже отмечалось ранее, каждое кодирование определяется тройкой $(T, \varphi, \varphi(T))$, где T – область определения T, $\varphi(T)$ – область значений отображения φ . Для равномерного по выходу кодирования $\varphi(T) = B^{\lceil \log \|T\| \rceil}$, где

 $\lceil x \rceil$ — наименьшее целое, большее или равное x, $\lVert T \rVert$ — мощность множества T. Таким образом, при построении равномерных по выходу кодирований вся сложность заключается в построении кодовых множеств.

Зафиксируем произвольное натуральное N, в кодовое множество T_N включим все слова u, для которых выполняется неравенство

$$\frac{1}{\overline{P_s}(u)} \le k^N \,, \tag{9}$$

и в то же время существует буква a_j , $a_j \in A$, такая, что для конкатенации слова u и a_j выполняется неравенство

$$\frac{1}{\overline{P_s}(ua_i)} > k^N. \tag{10}$$

Совершенно очевидно, что построенное таким образом кодовое множество T_N является конечным, полным, префиксным множеством слов во входном алфавите, т.е. T_N — кодовое множество. При равномерном по выходу кодировании каждому слову u ставится в соответствие слово $\phi_N(u)$, $u \in T_N$, длины $\lceil \log \|T_N\| \rceil$. Оценим избыточность предложенного метода кодирования. Из определения избыточности (4) имеем

$$r_{VB}(T_N, \theta, \varphi_N) = \frac{\lceil \log ||T_N|| \rceil}{d_s(T_N, \theta) - \hat{s} + 1} - H(\theta).$$
(11)

Кодирование ϕ_N — дешифруемое, поэтому величина $r_{VB}\left(T_N,\phi_N,\theta\right)$ неотрицательна. Найдём верхнюю оценку этой величины. Из соотношения (9) следует, что при любом $u,\ u\in T_N$, справедливо неравенство $\overline{P_s}(u)\geq \frac{1}{k^N}$. Просуммировав это неравенство по всем словам u из T_N и учитывая, что в силу полноты T_N выполняется равенство $\sum_{u\in T_N}\overline{P_s}(u)=1$, получим

$$k^N \ge \|T_N\| \,. \tag{12}$$

Из (11) с учётом (10) и (12) следует

$$r_{VB}(T_N, \theta, \phi_N) \leq \frac{\sum_{u \in T_N} P_{\theta(T_N)}^0(u) \log \|T_N\|}{d_s(T_N, \theta)} - H(\theta) + \frac{1}{d_s(T_N, \theta)} \leq \frac{-\sum_{u \in T_N} P_{\theta(T_N)}^0(u) \log \overline{P_s}(ua_j)}{d_s(T_N, \theta)} - H(\theta) + \frac{1}{d_s(T_N, \theta)}.$$

$$(13)$$

Из определения средней вероятности $\overline{P_s}(ua_j)$ слова ua_j по множеству источников Ω_s , свойств гамма-функции и (7) для слова u, заканчивающегося блоком v, справедливо неравенство

$$-\log \overline{P_s}(ua_j) \le -\log \overline{P_s}(u) + \log \left(|u| - s + \frac{k}{2} \right).$$

Отсюда и из (13) получаем

$$r_{VB}\left(T_{N}, \theta, \varphi_{N}\right) \leq \frac{-\sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) \log \overline{P_{s}}(u)}{d_{s}\left(T_{N}, \theta\right)} - H\left(\theta\right) + \frac{\sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) \log\left(u - s + \frac{k}{2}\right) + 1}{d_{s}\left(T_{N}, \theta\right)}.$$

Воспользовавшись (8), имеем

$$r_{VB}(T_{N}, \theta, \varphi_{N}) \leq \frac{\sum_{v \in A^{S}} \sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) r_{v}(u) F_{s}(u)}{d_{s}(T_{N}, \theta)} - H(\theta) + \frac{k-1}{2} \sum_{v \in A^{S}} \sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) \log \hat{r}_{\alpha}(u) + c \sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) \log \left(|u| - s + \frac{k}{2}\right)}{d_{s}(T_{N}, \theta)}.$$
(14)

Используя неравенство Иенсена для функций $-x\log x$ и $\log x$, а также тождествами Вальда (2) и определения величины $d_s\left(T_N,\theta\right)$, см. (1), получаем

$$\frac{\sum_{v \in A^{s}} \sum_{u \in T_{N}} P_{\theta(T_{N})}^{0}(u) r_{v}(u) F_{s}(u)}{d_{s}(T_{N}, \theta)} - H(\theta) \leq 0;$$

$$(15)$$

$$\sum_{u \in T_N} P_{\theta(T_N)}^0 \log(|u| - s) \le \log(d_s(T_N, \theta) - s); \tag{16}$$

$$\sum_{u \in T_N} P_{\theta(T_N)}^0 \log \hat{r}_{v}(u) \le \sum_{u \in T_N} P_{\theta(T_N)}^0 \log(|u| - s) \le \log(d_s(T_N, \theta) - s). \tag{17}$$

Из (14) и соотношений (15) – (17) окончательно вытекает

$$r_{VB}\left(T_N, \theta, \varphi_N\right) \leq \frac{k^s(k-1)}{2} \cdot \frac{\log d_s\left(T_N, \theta\right)}{d_s\left(T_N, \theta\right)} + \frac{\log d_s\left(T_N, \theta\right) + c}{d_s\left(T_N, \theta\right)},$$

где c не зависит от θ . Теорема доказана.

Из доказанной теоремы следует, что для множества Ω_s марковских источников с памятью s, $0 \le s < \infty$, существует универсальное равномерное по выходу кодирование.

Следствие. Для избыточности $R_{VB}(N,\Omega_s)$ универсального равномерного по выходу кодирования с заданной сложностью N справедлива оценка

$$R_{VB}(N,\Omega_s) \le \frac{k^s(k-1)+2}{2} \cdot \frac{\log d_s(T_N)}{d_s(T_N)} + \frac{c}{d_s(T_N)}, \tag{18}$$

где $d_s\left(T_N\right)=\inf_{\theta\in\Omega_s}d_s\left(T_N,\theta\right),$ с не зависит от θ , т.е. существует универсальное равномерное по выходу кодирование для множества источников Ω_s .

Доказательство. Утверждение следствия вытекает непосредственно из теоремы и определения величин $R_{VB}(N,\Omega_s)$ и $r(T_N,\theta,\phi_N)$ (см (5)).

3. Кодирование типа VB для стационарных источников

Сформулируем и докажем основные результаты работы.

Теорема 2. Для множества стационарных источников Ω_{∞} существует слабоуниверсальное равномерное по выходу кодирование.

Доказательство. Каждый стационарный источник θ , $\theta \in \Omega_{\infty}$, задается условными вероятностными распределениями $\theta_s\left(a_i|v\right)$, $a_i \in A$, $v \in A^s$, $s = 0, 1, 2, \ldots$ появления буквы a_i после блока v. Таким образом, каждый стационарный источник θ определяет последовательность марковских источников θ_s , $s = 0, 1, 2, \ldots$, при s, стремящемся к бесконечности, энтропия $H\left(\theta_s\right)$ источника θ_s , не возрастая, сходится к энтропии $H\left(\theta\right)$ источника θ , т.е. $\lim_{s \to \infty} H(\theta_s) = H(\theta)$.

Для любого фиксированного s, $0 \le s < \infty$, определена стоимость кодирования $C_{VB}\left(T,\theta,\phi\right)$ (см. (3)). Покажем, что стоимость кодирования $C_{VB}\left(T_N^s,\theta,\phi^s\right)$, предложенного ранее, при N и s, стремящихся к бесконечности, существует и равна энтропии источника $H\left(\theta\right)$. Для этого нам нужно установить, что избыточность кодирования $r_{VB}\left(T_N^s,\theta,\phi_N^s\right)$ для стационарного источника $\theta,\theta\in\Omega_\infty$, стремится к нулю с ростом N и s. Используя определение величины $r_{VB}\left(T_N^s,\theta,\phi_N^s\right)$ (см. (11)), имеем

$$r_{VB}\left(T_{N}^{s}, \theta, \varphi_{N}^{s}\right) = \left[\frac{\left[\log\left\|T_{N}^{s}\right\|\right]}{d_{s}\left(T_{N}^{s}, \theta_{s}\right) - \hat{s} + 1} - H\left(\theta_{s}\right)\right] + \left[H\left(\theta_{s}\right) - H\left(\theta\right)\right]. \tag{19}$$

В равенстве (19) первое слагаемое в правой части, согласно следствию из предыдущего параграфа, ограничено асимптотически сверху величиной

$$\frac{k^{s}(k-1)+2}{2} \cdot \frac{\log d_{s}(T_{N}^{s})}{d_{s}(T_{N}^{s})}.$$
 (20)

Если выбрать $s = o\left(\log d_s\left(T_N^s\right) - \log\log u_s\left(T_N^s\right)\right)$, то из (20) и свойств энтропии следует, что с ростом s оба слагаемых в (19) стремятся к нулю, т.е.

$$\lim_{N\to\infty} r_{\!V\!B}\left(T_N^s,\theta,\varphi_N^s\right) = 0 \quad \text{или} \quad \lim_{N\to\infty} C\!\left(T_N^s,\theta_s,\varphi_N\right) = H\left(\theta\right).$$

Теорема доказана.

Из теоремы 2 следует, что существует кодирование, при котором для любого фиксированного источника θ из Ω_{∞} его избыточность стремится к нулю. Однако это стремление не является равномерным по множеству источников Ω_{∞} . Нижеследующее утверждение даёт ответ на вопрос о существовании универсального равномерного по выходу кодирования для множества источников Ω .

Теорема 3. Для существования универсального равномерного по выходу кодирования множества источников Ω необходимо и достаточно, чтобы при s, стремящемся κ бесконечности, энтропия $H(\theta_s)$ сходилась равномерно по θ , $\theta \in \Omega$, κ энтропии $H(\theta)$.

Доказательство. Необходимость. Пусть $H(\theta_s)$ сходится равномерно по θ к $H(\theta)$ на множестве Ω , при $s \to \infty$. Согласно определению, для любой последовательности кодовых множеств $\left\{T_N^s\right\}$, $N=1,\,2,...$, $0 \le s < \infty$, справедливо равенство

$$r(T_N^s, \theta, \varphi_N) = r(T_N^s, \theta_s, \varphi_N) + H(\theta_s) - H(\theta).$$

Так как $\,r\!\left(T_N^s, \Theta_s, \varphi_N\right)\!\geq 0$, то из последнего равенства имеем

$$H(\theta_s) - H(\theta) \le r(T_N^s, \theta, \varphi_N) = r(T_N^s, \theta_s, \varphi_N) + H(\theta_s) - H(\theta). \tag{21}$$

В качестве T_N^s возьмём кодовые множества, построенные при доказательстве теоремы 1. Согласно следствию, из (18) и (21) имеем

$$r\left(T_{N}^{s}, \theta, \varphi_{N}\right) \leq \frac{k^{s}(k-1)+2}{2} \cdot \frac{\log d_{s}\left(T_{N}^{s}\right)}{d_{s}\left(T_{N}^{s}\right)} + \frac{c}{d\left(T_{N}^{s}\right)} + H\left(\theta_{s}\right) - H\left(\theta\right) \tag{22}$$

Из (22) условия теоремы и следствия из теоремы 1 вытекает справедливость утверждения.

Достаточность. Если $H(\theta_s) - H(\theta)$ не стремится к нулю равномерно по множеству Ω , то из (20), точнее, из нижней оценки (21), следует, что для любой последовательности кодовых множеств T_N^s избыточность $r(T_N^s, \theta, \phi_N)$ не стремится к нулю равномерно по множеству Ω . Теорема доказана.

Заключение

В работе предложен метод универсального равномерного по выходу кодирования сообщений, порожденных известным марковским источником связанности s; получена верхняя оценка избыточности этого кодирования, которая примерно в два раза меньше полученной ранее оценки [17]. Доказано существование слабоуниверсального кодирования типа BV для множества всех стационарных дискретных источников и сформулированы необходимые и достаточные условия существования универсального кодирования для произвольного множества источников.

ЛИТЕРАТУРА

- 1. *Шеннон К.* Математическая теория связи. Работы по теории информации и кибернетике. М.: ИЛ, 1969. С. 243–332.
- 2. *Хорошевский В.Г.* Архитектура вычислительных систем. М.: МГТУ им. Н.Э. Баумана, 2005. 520 с.
- 3. Тарасенко Ф.П. Введение в курс теории информации. Томск: ТГУ, 1963.
- 4. Фано Р. Передача информации. Статистическая теория связи. М.: Мир, 1965. 440 с.
- 5. Галлагер Р. Теория информации и надёжная связь. М.: Сов.радио, 1974. 720 с.
- Могульский А.А., Трофимов В.К. Тождество Вальда и стоимость кодирования для цепей Маркова // VII Всесоюзная конференция по теории кодирования и передачи информации (Теория информации). М.; Вильнюс, 1978. Ч. І. С. 112–116.
- 7. *Кричевский Р.Е.* Длина блока, необходимая для получения заданной избыточности // ДАН СССР. 1966. Т. 171. № 1.

- 8. *Гильберт Э.Н.*, *Мур Э.Ф.* Двоичные кодовые системы переменной длины // Кибернетический сборник. М.: ИЛ, 1961. № 3. С. 103–141.
- Ходак Г.Л. Оценки избыточности при пословном кодировании сообщений, порождаемых бернуллиевским источником // Пробл. передачи информ. 1972. Т. 8. № 2. С. 21–32.
- 10. Khodak G.L. Coding of markov sources with low redundancy // Proc. of 2 International Symp. Inform. Theory Tsahkadzor, 1973. P. 201–204.
- 11. *Jelinek F.*, *Shneider K.* On variable-length to block coding // IEEE Trans. Inform. Theory. 1972. V.18. No. 6. P. 756–774.
- 12. *Трофимов В.К.* Эффективное кодирование блоками слов различной длины, порождённых известным марковским источником // Обработка информации в системах связи. Л.: ЛЭИС, 1985. С. 9–15.
- 13. Ziv J. Variable-to-fixed length codes are better than fixed-to-variable length codes for marcov sources // IEEE Trans. Inform. Theory. 1990. V. 36. No.4. P. 861–863.
- 14. *Кричевский Р.Е.* Связь между избыточностью кодирования и достоверностью сведений об источнике // Пробл. передачи информ. 1968. Т.4. № 3. С. 48–57.
- 15. Krichevskii R.E., Trofimov V.K. The performace of universal encoding // IEEE Trans. Inform. Theory. 1981. V. IT-27. No. 2. P. 199–207.
- 16. Shtarkov Yu.M., Babkin V.F. Combinatorial encoding for discrete stationary sources // 2 Internat. Symp. on Inform. Theory Tsahkadzor. 1973. P. 249–256.
- 17. *Трофимов В.К*. Равномерное по выходу кодирование марковских источников при неизвестной статистике // Пятый Международный симпозиум по теории информации. 1979. Ч. II. С.172–175.
- 18. Krichevsky R. Universal Compression and Retrieval. London, 1994. 219 p.
- Sergio Verdu. Fifty Years of Shannon Theory // IEEE Trans. Inform. Theory. 1998. VIT 44. No 6. P. 2057–2077.

Трофимов Виктор Куприянович ГОУ ВПО «Сибирский государственный университет телекоммуникаций и информатики»

E-mail: trofimov@sibsutis.ru Поступила в редакцию 3 декабря 2010 г.