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REVERSIBLE STATES OF THE FUNCTIONING OF REGULATORY
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The paper describes reversible states of the functional graphs identified by the
discrete models of the gene network regulatory circuits with special functions at
its vertices. The recurrent formula of the reversible states number as well as its as-
ymptotic behavior is found.
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We consider one of the methods for description and modeling of gene networks in
terms of discrete models of the regulatory circuits functioning, which are an extension
of random models of genetic regulatory networks [1,2]. The regulatory circuit is repre-
sented as a connected digraph G(V,D), where 1,V n∈  is the set of vertices, identified
with the products of genetic elements (RNA, proteins, etc.), and D is the set of edges as-
sociated with the regulatory relations. Circulant digraphs Gn,k, where (k – 1) is the num-
ber of incoming (and outgoing) edges, k n≤ , are considered. Variables taking integer
values with the threshold p are corresponded to all vertices. Each value indicates the
weight of a given vertex in a given moment of time and represents a concentration of
the product, identified with the vertex. The regulatory circuit functioning is character-
ized by the stepwise changing of states – n-vectors in the alphabet <0,…,(p – 1)>. The
paper describes reversible states that means vectors with incoming edges in the func-
tional graphs of the regulatory circuits, and reports their number estimation depending
on values of the parameters n, k and p. It is not our goal to provide an overview of vari-
ous approaches to the modeling of gene networks. We only note that [3] include the
sections devoted to the discrete approach to modeling of biochemical networks and the
extensive bibliography concerning results of analysis of the networks functioning.

1. The problem of characterization of reversible states of the functional graphs

Gene networks have an important role in the living systems functioning. They are
the basis for modeling the processes occurring in cells. A characteristic feature of its or-
ganization is their ability to regulate itself through the regulatory circuits with positive
and negative feedbacks. These two types of circuits make it possible to maintain a cer-
tain functional state or switch to another state of a gene network including the switch
under the influence of environmental factors [4].
                                                          
1 The work was supported by the Russian Foundation for Basic Research (08-01-00671, 09-01-00070) and the
interdisciplinary grant 119 of SB RAS.
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The regulatory circuit is determined by specifying of a circulant digraph
Gn,k (V, D) with the vertex set V and the edge set D, where = { | 1, }iV v i n∈ ,

( )= {( , ) | 1, , 1, 1}i i j modnD v v i n j k+ ∈ ∈ − , 2,k n∈ .

Expect v0 = vn by the condition of cyclicity and denote = {0,..., 1}pB p −
 
and

1= {( ,..., ) | , 1, }n
p n i pB x x x B i n∈ ∈ .

Define the functions 1: k
v p pi

f B B− →  in every vertex iv V∈ , 1,i n∈ . Let values of

these functions are calculated for variables xj, 1(mod  ), 1(mod  )j i k n i n∈ − + − , as-
signed to the vertices with edges incoming into vi.

The gene network functioning is characterized by the changing of substance con-
centrations, i.e. changing of n-vectors (states) in n

pB , corresponding to the values of vi
f

in n graph vertices at every moment of time [5]. Thus, dynamics of state changes for
each initial state is determined by the following mapping 

1
( ,..., , ) : .n n

v v p pn
A f f p B B→

Let the same function 1: k
p pf B B− →  is defined for all graph vertices. We will use

the notation A(X) = Y for the vector X of variables and the vector Y of values assuming
that the mapping A is defined for the function f and the threshold p.

Definition 1.1. The sequence of states 1,..., r n
pX X B∈  is called a cycle of the length

r of the mapping : n n
p pA B B→ , if

1

1 1
( ) = , 1, ,

= .

i i

r
A X X i r
X X

+

+

⎧ ∈
⎨
⎩

When r = 1, we have A(X1) = X1 and X1 is called a fixed point of the mapping
: n n

p pA B B→ .
Definition 1.2. The directed graph is called a functional graph of the regulatory cir-

cuit if its vertices correspond to the elements of n
pB  and the edge from a state n

pX B∈

goes to a state n
pY B∈  if and only if A(X) = Y.

Definition 1.3. The state n
pY B∈  is reversible for the mapping : n n

p pA B B→  if there

exists the state n
pX B∈  for which A(X) = Y. This corresponds to the edge (X, Y) from X

to Y in the functional graph.

Let 1= ( ,..., ) n
n pX x x B∈ . The weight of X is a value 

1

n

i
i

X x
=

= ∑ . Note that in the

case p = 2,
||X ⊕  Y|| = ||X|| + ||Y|| – 2 <X, Y>

for all , n
pX Y B∈ , where <X, Y> is the scalar product of vectors X and Y.

Suppose : n n
p pB Bδ →  is the operator of a sequence cyclic shift. Let +δ  is the right

shift operator, that means ( ) =X Y+δ  for states , n
pX Y B∈  if and only if yi+1(mod n) = xi

for all 1,i n∈ , and −δ  is the left shift operator, that means ( ) =X Y−δ  if and only if



Reversible states of the functioning of regulatory circuits discrete models of gene networks 87

yi = xi+1(mod n). Define the function f compared to the vertices of Gn,k for arbitrary values
of the parameters n, k and p by the following way

1(mod  ) 1(mod  )( ,..., )i k n i nf x x− + −

⎧
⎪
⎪= ⎨
⎪
⎪
⎩

xi + 1, if 0
i

j
j D

x
∈

=∑  and xi < p – 1,              (1.1)

xi – 1, if 0
i

j
j D

x
∈

>∑  and xi > 0,                    (1.2)

xi, otherwise,                                                (1.3)

where = { ( ) | 1, 1}iD i j modn j k− ∈ −  represents the number of vertices with edges in-
coming into vi. Therefore, we specified the discrete model of the gene network regula-
tory circuits with the functions.

2. Necessary and sufficient conditions for invertibility
of functional graph reversible states

This section describes the reversible states of the mapping : n n
p pA B B→ . At the be-

ginning we consider the case p = 2 and then the case of an arbitrary p. We establish that
a state is reversible if and only if it does not contain occurrences of the certain kind sub-
vectors. We call such subvectors by prohibitions.

2 . 1 .  R e v e r s i b l e  s t a t e s  f o r  p = 2

Statement 2.1. When k = 2, all states of the functional graph of the mapping

2 2: n nA B B→  are reversible.
Proof. Let 1= ( ,..., )nY y y  is an arbitrary state. According to the definition of the

mapping 2 2: n nA B B→  with k = 2, we have A(X) = Y for some state X if and only

if
1

1

1, = 0 = 0,
= 1, = 1 = 1,

,  .

i i i

i i i i

i

x if x and x
y x if x and x

x else

−

−

+⎧
⎪ −⎨
⎪⎩

Since p = 2, then 11 = 1 = =i i i ix x x x −+ − . So, it is necessary that 1=i iy x − . Thus,
A(X) = Y for the state 2 1= ( ,..., , )nX y y y  whose coordinates are obtained by the cyclic
shift and negation of Y coordinates. That means the state Y is reversible for the mapping

2 2: n nA B B→ .
Theorem 2.1. When 3k ≥  the state 1= ( ,..., )nY y y  is reversible for the mapping

2 2: n nA B B→  if and only if Y does not contain the prohibitions = (1,0 ,1)r
rY  for all

1, 2r k∈ − .
Proof. Necessity. Let the state Y contains a prohibition Yr for some 1, 2r k∈ − .

Without loss of generality we may assume that the occurrence of this prohibition begins
with the first coordinate of Y, i.e. = ( ,*,...,*)rY Y , where * {0,1}∈  and

1 2= 1 = 1rx x + − . Because Y is the reversible state of the mapping A, there exists the
state X such that A(X) = Y. Since y1 = 1, then according to (1.1) – (1.3) we obtain

1= (*,...,*,0 ).kX − (2.1)
Since yr+2 = 1, then similar

1 2= (0 ,*,...,*,0 ).r k rX + − − (2.2)
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From (2.1) and (2.2) we derive
1 1= (0 ,*,...,*,0 ).r kX + − (2.3)

So, we have a contradiction with (2.3) because 21r
rY+ ≠  for r > 0,

2( ) = (1 ,*,...,*) .rA X Y+ ≠  Necessity is proved.

 Sufficiency. Let the state Y does not contain the prohibitions Yr for all 1, 2r k∈ − .
Noticing that Y = (1,…,1) is the state of the cycle (0,…,0) ↔  (1,…,1) and, therefore, a
reversible state, consider the case when Y contains zero coordinates. In this case it can
be represented as 1 1 2 2= (1 ,0 ,1 ,0 ,...,1 ,0 )s rs r s r m mY  for some 1m ≥ , where

=1( ) =m
i ii r s n+∑  and 1ir k≥ − , 1is ≥ . Form the state

2 2 21 2 2 111 1 2= (0 ,1 ,0 ,...,1 ,0 ,1 ,0 ).r k s k r ks r k s k km m mX − + + − − +− − + + − −−

It is implied from (1.1) – (1.3) that A(X) = Y and Y is a reversible state. Sufficiency
is proved.

Corollary 2.1. The state 2
nY B∈  is reversible for the mapping 2 2: n nA B B→  if and

only if every block of units in Y is preceded by no less than (k – 1) zeros.

2 . 2 .  R e v e r s i b l e  s t a t e s  f o r  p ≥ 3

Theorem 2.2. The state 1= ( ,..., )nY y y  is reversible for the mapping  : n n
p pA B B→

if and only if Y does not contain the prohibitions (2.4) – (2.8).
1. (a, 0r, p – 1), where 1, 1a p∈ − , 1, 2r k∈ − , (2.4)

2. (b, p – 1), where 2, 1b p∈ − , (2.5)

3. (a, 0r, 1s, p – 1), where 1, 1a p∈ − , 1, 2r k∈ − , 1,s n k∈ − , (2.6)

4. (b, 1s, p – 1), where 2, 1b p∈ − , 1,s n k∈ − , (2.7)

5. (1n−k+1, p – 1). (2.8)
Proof. Necessity. Let the state 1= ( ,..., )nY y y  is reversible for the mapping

: n n
p pA B B→ , i.e. there exist the state X for which A(X) = Y. We will carry out the proof

by contradiction, considering all the prohibitions in order. It can be assumed that an oc-
currence of a prohibition in Y begins with the first coordinate.

1. = ( ,0 , 1,*,...,*)rY a p − , where 1, 1a p∈ −  and 1, 2r k∈ − . Here and below

* 0, 1p∈ − . According to (1.1), (1.3) and the condition 2 = 1ry p+ −  we have
1 2

2= (0 , ,*,...,*,0 ),r k r
rX x+ − −
+  where 2 = 2rx p+ −  or 2 = 1rx p+ − . At the same time

1 = 0x  and 1 = > 0y a . So, it is necessary from (1.1) that 1 1
2= (0 , ,*,...,*,0 )r k

rX x+ −
+

and a = 1. Therefore, 1( ) = (1 , 1,*,...,*) ,rA X p Y+ − ≠  and we obtain the contradiction.
That means Y does not contain prohibition (2.4).
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2. = ( , 1,*,...,*)Y b p − , where 2, 1b p∈ − . Since 1 = 2y b ≥  and the mapping A ap-
plied to any states does not change coordinates of this state by more than one, then

1 1x ≥ . From (1.2) we have the contradiction with the condition 2 = 1y p − . So, Y does
not contain prohibition (2.5).

3. = ( ,0 ,1 , 1,*,...,*)r sY a p − , where 1, 1a p∈ − , 1, 2r k∈ −  and 1,s n k∈ − . Ar-

guing as in the first item we derive 1
2= (0 , ,*,...,*),s r

s rX x+ +
+ + where

2 1, 2r sx p p+ + ∈ − −  and 1s r n k+ ≤ − − . So, we obtain the contradiction because
( )A X Y≠ . Thus, Y does not contain prohibition (2.6).

4. = ( ,1 , 1,*,...,*)sY b p − , where 2, 1b p∈ −  and 1,s n k∈ − . The condition

1 = 2y b ≥  according to (1.2) implies the expressions 1 1x ≥  and 2 1=...= = 2sx x + . Then
(1.2) leads to the inequality 2 < 1sy p+ − . We have the contradiction. That means Y does
not contain prohibition (2.7).

5. 1= (1 , 1,*,...,*)n kY p− + − . Since y1 = 1 and 2= 2 = 1n
j n kj n k y y p− +− +

≥ −∑ , then x1

= 2. Similar 2 1=...= = 2n kx x − + . We conclude the contradiction as in the item 4. There-
fore, Y does not contain prohibition (2.8).

Necessity is proved.
Sufficiency. Let the state 1= ( ,..., )nY y y  does not contain prohibitions (2.4) – (2.8).

Show that A(X) = Y for some state X. Let m is the number of Y coordinates which are

equal to p – 1. We have nm
k

≤ ⎣ ⎦ , hence, the following cases are considered below: m =

0, m = 1 and 2 nm
k

≤ ≤ ⎣ ⎦ .

1. m = 0. The condition 2iy p≤ −  implies that 1ix p≤ − . So, it is correctly to form
the state X by the following way 1 1= ( ,..., ) = ( 1,..., 1).n nX x x y y+ +  Further A(X) = Y

from (1.2) because 1ix ≥  for all 1,i n∈ .
2. m = 1. Without loss of generality it can be assumed that i = n, i.e. = 1ny p − . So

far as Y does not contain prohibition (2.5), we conclude that 1 {0,1}ny − ∈ .
When 1 = 0ny − , prohibition (2.4) implies 1 2 1= =...= = 0n k n k ny y y− + − + − , i.e.

1
1= ( ,..., ,0 , 1)k

n kX y y p−
− − , where 1,..., 0, 2n ky y p− ∈ − . Since 2iy p≤ −  for all

1,i n k∈ − , then it is correctly to form the state
1

1= ( 1,..., 1,0 , 1).k
n kX y y p−

−+ + − Thus, A(X) = Y from conditions (1.2) – (1.3).
Consider the case 1 = 1ny − . Let l is the index of the rightmost but not the last coor-

dinate of Y, which is not equal to 1. From prohibition (2.8) we have 1l k≥ −  and further
(2.7) implies = 0ly . So, according to (2.6) 2 =...= = 0l k ly y− +  and, therefore,

1 1
1 1= ( ,..., ,0 ,1 , 1),k n l

l kY y y p− − −
− + −  where 0, 2jy p∈ −  for 1, 1j l k∈ − + . If l = k – 1,

then (1.1) – (1.3) induce A(X) = Y for state 1= (0 , 1)nX p− − . If ,l k≥  we form the state
2

1 1= ( 1,..., 1,0 , 1)n k l
l kX y y p+ − −
− ++ + −  and according to (1.2) – (1.3) obtain A(X) = Y.
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3. 2 nm
k

≤ ≤ ⎣ ⎦ . As in the item 2 the state Y contains coordinates equal to (p – 1) if

and only if the subvector 1(0 ,1 ),k s− 0,s n k∈ − , precedes them. Form Y by follows

1 2

1 2

= (*,...,*, ,*,...,*, ,...,*,...,*, ),m
i i im

Y Y Y Y��	�
 ��	�
 ��	�


where * 0, 2p∈ −  and Yj is one of the subvectors 1(0 ,1 , 1)k s p− −  such that

=1( | |) =m
j jj i Y n+∑  for all 1,j m∈ . Now form the state

| | 1| | 1 | | 11 2

1 2

= ( ,..., ,0 , 1, ,..., ,0 , 1,..., ,..., ,0 , 1),YY Y m

i i im

X p p p−− −• • − • • − • • −��	�
 ��	�
 ��	�


with the symbol { }•  denoting coordinates of the state Y increased by one. From (1.1) –
(1.3) we obtain A(X) = Y. Sufficiency is proved.

Corollary 2.2. The state n
pY B∈  is reversible for the mapping : n n

p pA B B→  if and

only if the subvector 1(0 ,1 )k s− , 1,s n k∈ − , precedes all Y coordinates equal to (p – 1).
Theorem 2.3. All connected components of the functional graph of the mapping

: n n
p pA B B→  are cycles if and only if p = k = 2.

Proof. Necessity follows from theorems 2.1 and 2.2, and sufficiency follows from
statement 2.1.

3. The number of reversible states for p = 2

 In the case p = 2 the mapping 2 2: n nA B B→  is defined on the set 2
nB  of all binary

states. According to formulas (1.1) – (1.3) the mapping A applied to any state 2
nX B∈

gives the state 2
' nX B∈  whose coordinates are calculated by formulas

ix

⎧
⎪⎪′ = ⎨
⎪
⎪⎩

1, 0
i

j
j D

if x
∈

=∑ ,                                           (3.1)

0, 0
i

j
j D

if x
∈

>∑ ,                                         (3.2)

As before Di is the numbers of (k – 1) vertices which have the output edges leading
to the vertex with the number 1,i n∈  in the graph Gn,k, k n≤ .

If k = 2 then by theorem 2.3 the set of reversible states coincides with the set 2
nB .

Therefore, their number in this case is equal to 2n.

3 . 1 .  T h e  r e c u r r e n t  f o r m u l a  f o r  t h e  r e v e r s i b l e
s t a t e s  n u m b e r  i n  t h e  c a s e  3k ≥

 Assume further 3k ≥ . The state 1= ( ,..., )nX x x  is called a (k, n)-state if it does not

contain the linear occurrences of subvectors (1,0 ,1)r  for all 1, 2r k∈ − . Denote the

subset of such states in 2
nB  by ,k nΛ  and note that 1, ,k n k n+Λ ⊂ Λ  for all values of n

and k.
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Define the function :Q ℵ → ℵ  calculating the (k, n)-states as follows. For any fixed

value 3,k n∈
Q(0) = 1, Q(1) = 2, Q(2) = 4 and Q(n) = | ,k nΛ |.

Lemma 3.1. For all 3n ≥  the function Q(n) satisfies the recurrent relation

Q(n) = 2Q(n – 1) – Q(n – 2) + Q(n – k). (3.3)

Proof. The proof is by the induction on n.
The induction base. n = k = 3. In this case the value Q(3) is equal to the number of

states of the length 3 that do not contain the linear occurrences of the subvector (1,0,1).
There are exactly 23 – 1 = 7 of such states. Whereas relation (3.3) gives Q(3)=2Q(2) –
Q(1) + Q(0) = 7.

The induction step. Suppose that Q(n) = 2Q(n – 1) – Q(n – 2) + Q(n – k) for any
fixed value 3,k n∈ . Fix 3, 1k n∈ +  and find the value Q(n + 1). In the case 3,k n∈
we have

, 1 1 1 ,{ = ( ,..., ,*) | * 0,1, ( ,..., ) }.k n n n k nX x x x x+Λ ⊂ ∈ ∈ Λ

Denote by Qi(s), {0,1}i ∈ , 3, 1s n∈ + , the number of states in ,k sΛ  with the last
coordinate equal to i. Then

Q0(s) = | , 1k s−Λ | = Q(s – 1) and Q1(s) = Q(s) – Q(s – 1). (3.4)

Because only when xn–r = 1, xn–r+1 =…= xn = 0 and xn+1 = 1 for any 1, 2r k∈ − , then

1 1 , 1= ( ,..., , )n n k nX x x x + +∉ Λ  for the subvector 1 ,( ,..., )n k nx x ∈ Λ , therefore,

Q(n + 1) = | , 1k n+Λ | = 2| ,k nΛ | – Q1(n – 1) –…– Q1(n – k + 2). (3.5)

From (3.4) and (3.5) we obtain
Q(n + 1) = 2Q(n) – Q(n – 1) + Q(n + 1 – k). (3.6)

Now let k = n + 1. So far as 1, 1 , 1n n n n+ + +Λ ⊂ Λ , then deleting the state 1(1,0 ,1)n−

from the set , 1n n+Λ  and taking into account (3.6) we conclude

| 1, 1n n+ +Λ | = | , 1n n+Λ | – 1 = 2Q(n) – Q(n – 1) + Q(1) – Q(0) = 2Q(n) – Q(n – 1) + Q(0).

Lemma 3.2. The number of (k, n)-states with the first and last coordinates equal to 1
is given by the value F(n) = Q(n – k).

Proof. The number of (k, n)-states of the type (0,*,…,*,0), where * {0,1}∈ , is equal
to Q(n – 2). The number of (k, n)-states of the type (0,*,…,*,1) is equal to the number of
(k, n)-states of the type (1,*,…,*,0) and is given by the expression Q(n – 1) – Q(n – 2).
Therefore, the number of (k, n)-states of the type (1,*,…,*,1) is equal to

F(n) = Q(n) – Q(n – 2) – 2(Q(n – 1) – Q(n – 2)) = Q(n) – 2Q(n – 1) + Q(n – 2). (3.7)

According to lemma 3.1 Q(n) = 2Q(n – 1) – Q(n – 2) + Q(n – k). Thus, from (3.7)
we obtain F(n) = Q(n – k).

Lemmas 3.1 and 3.2 provide the number F(n) to satisfy the recurrent relation

F(n) = 2F(n – 1) – F(n – 2) + F(n – k). (3.8)
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Denote the number of reversible states of the mapping : n n
p pA B B→  by H(n, k, p).

Lemma 3.3. The number H(n, k, 2) of reversible states of the mapping 2 2: n nA B B→
is equal to ( , , 2) = ( 1) ( 2) ( ),H n k k F n k F n⋅ + − − ⋅  where F(n) satisfies the recurrent re-
lation (3.8).

Proof. By theorem 2.1 the value H(n, k, 2) is equal to the number of n-states which
do not contain subvectors (1,0r,1) for all 1, 2r k∈ − . Meanwhile lemma 3.1 gives the
recurrent relation for the number Q(n) of (k, n)-vectors which do not contain the linear
occurrences of the subvectors (1,0r,1) for any 1, 2r k∈ − . Therefore, in order to find
H(n, k, 2), all states of the type (0 ,1,*,...,*,1,0 ),s r s−  where * {0,1}∈ , 0,s r∈ ,

1, 2r k∈ − , should be deleted from the set ,k nΛ . By lemma 3.2 the number of such

states for any 1, 2r k∈ −  is equal to ( 1) ( )r F n r+ ⋅ − , where the coefficient (r + 1) ap-

pears due to the parameter 0,s r∈ . Hence, we obtain the following sequence of equali-
ties

2

=1
2

=1

( , , 2) = ( ) ( 1) ( ) =

( ) ( 1) ( ( ) 2 ( 1) ( 2)) =

k

r
k

r

H n k Q n r F n r

Q n r Q n r Q n r Q n r

−

−

− + ⋅ −

= − + ⋅ − − − − + − +

∑

∑
2 2 2

=1 =1 =1
= ( ) ( 1) ( ) 2 ( 1) ( 1) ( 1) ( 2) =

k k k

r r r
Q n r Q n r r Q n r r Q n r

− − −
− + ⋅ − + ⋅ + ⋅ − − − + ⋅ − −∑ ∑ ∑

2 1

=1 =2 =3
2

=3

= ( ) ( 1) ( ) 2 ( ) ( 1) ( ) =

( ) 2 ( 1) 3 ( 2) ( 1) ( ) 4 ( 2) 2 ( 1) ( 1)

k k k

r r r
k

r

Q n r Q n r r Q n r r Q n r

Q n Q n Q n r Q n r Q n k Q n k

− −

−

− + ⋅ − + ⋅ − − − ⋅ −

= − − − − − + ⋅ − + − + ⋅ − ⋅ − + +

∑ ∑ ∑

∑
2 2

=3 =3
2 ( ) ( 2) ( 1) ( 1) ( ) ( 1) ( ) =

k k

r r
r Q n r k Q n k k Q n k r Q n r

− −
+ ⋅ − − − ⋅ − + − − ⋅ − − − ⋅ −∑ ∑

= ( ) 2 ( 1) ( 2) ( 1) ( 1) ( ).Q n Q n Q n k Q n k k Q n k− − + − + ⋅ − + − − ⋅ −

Since by lemma 3.1 ( ) = 2 ( 1) ( 2) ( ),Q n Q n Q n Q n k− − − + −  we conclude
( , , 2) = ( 1) ( 2) ( ).H n k k F n k F n⋅ + − − ⋅

3 . 2 .  T h e  r e v e r s i b l e  s t a t e s  n u m b e r  a s y m p t o t i c
f o r  3k ≥

Theorem 3.1 The asymptotic behavior of the function H(n, k, 2) for the fixed pa-
rameter 3k ≥  is given by the relation ( , , 2) ~ ,n

kH n k c R where ck are the constants de-
pending only on k and 1 < R < 2 is the largest by module real root of the characteristic
equation

1 22 1 = 0k k k− −λ − λ + λ − (3.9)
of recurrent relation (3.8).
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Proof. Since (3.8) is the linear recurrent relation of k order with constant coeffi-
cients, its solution is sought in the form = n

nf cλ  with constants c and λ . This leads to

the characteristic equation 1 22 1 = 0,k k k− −λ − λ + λ −  k roots of which give solutions of
the form n

iλ  for 1,i k∈ . Show that these roots are different. Denote
1 2( ) = 2 1.k k kg − −λ λ − λ + λ − Then

1 2 3( ) = 2( 1) ( 2) .' k k kg k k k− − −λ λ − − λ + − λ

So far as ( ) = 0'g λ  if and only if = 0λ , = 1λ  or 2= k
k
−

λ  and these values are

not the roots of ( )g λ , therefore, all roots of equation (3.9) are different. Thus, k roots of
equation (3.9) form the basis of the solution space of recurrent relation (3.8) whose gen-

eral solution can be written as 
=1

( ) = .
k

n
i i

i
F n c λ∑  Analyze the asymptotic behavior of the

sequence F(1), F(2),… It is sufficient to consider the term n
i ic λ  with the largest abso-

lute value of the root and the coefficient 0ic ≠ . Denote this root by R. Then the as-

ymptotic behavior of the function F(n) is given by the relation ( ) ~ ,nF n cR  where c is

constant. In view of lemma 3.3 this implies ( , , 2) ~ ,n
kH n k c R  where ck is a constant

depending only on k.
It is remain to show that 1 < R < 2 is the real root of (3.9). Let = (cos sin )R iλλ φ + φ

is an arbitrary root of equation (3.9). Then 2 2( 1) = 1k −λ λ −
 

and

2
2 2

1 1| 1 | = =
| |k kR− −

λ

λ −
λ

. On the other hand

2 2| 1 | = 2 cos 1R Rλ λλ − − φ +  and 2 2 2( 1) | 1 | ( 1)R Rλ λ− ≤ λ − ≤ + .
So, we obtain

2 2
2

1( 1) ( 1) .kR R
Rλ λ−

λ

− ≤ ≤ + (3.10)

 Since (1) < 0g  and (2) > 0g  for 3k ≥ , there exist the real root of equation (3.9)
which is greater than 1 by the function ( )g λ  continuity on the real axis. Meanwhile
(3.10) implies that there are not roots less than –1. Thus, R > 1. Then λ  reaches the

maximum absolute value =R Rλ  at the minimum value of 2
1
kR −
λ

 which is equal to

2( 1)Rλ − , i.e. when cos = 1φ  and sin = 0φ . Hence, R is the real root of equation (3.9).
The estimation R < 2 is obvious because the total number of n-states for p = 2 is 2n.

Conclusion

 Investigation of the regulatory circuits functioning represented in this paper pro-
vides an opportunity to understand the regulatory mechanisms of the processes under
the control of gene networks and possibility for a directional impact on them.
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