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A method of deriving test pair v1, v2 for robust path delay fault (PDF) of special
combinational circuit is suggested. Circuit is obtained by covering binary decision
diagram (BDD) with look up table (LUT) based configurable logic blocks
(CLBs). It is found out that for each path of the circuit there exists a test pair v1, v2
on which delay fault manifests itself as robust. Triplets v1, v2, v1 or v2, v1, v2 detect
delays of both rising and falling transitions of the same path. Integrating triplets of
all paths we derive test T that detects any path delay fault of the circuit, single and
multiple.
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Delay testing has become very important problem with development of nanometer
technologies. The objective of delay testing is to detect timing defects degrading the
performance of a circuit. Path delay fault model is considered more preferable for de-
tection of timing defects.

To observe delay defects, it is necessary to generate and propagate transitions in the
circuit input. This requires application of a pair of vectors v1, v2. The first vector v1 sta-
bilizes all signals in the circuit. The second vector v2 causes the desired transition on the
input of a circuit. Take into account that delays of falling transition and rising transition
along the same path from a primary input to a primary output in a circuit may be differ-
ent. In the general case it is necessary a pair of vectors v1, v2 for each kind of transitions
of a path. We will call a pair of vectors on which PDF manifests itself as PDF test pair
(for the corresponding transition along the path). Single and multiple PDFs are distin-
guished.

In accordance with the conditions of fault manifestation single PDFs are divided into
robust and non robust [1, 2]. PDF is robust if there is a test pair on which the fault mani-
festation does not depend on delays of other circuit paths.

PDF is non robust if a manifestation of the fault on a test pair is possible only when
all other paths of a circuit are fault free.

It is very important to provide testability during circuit design. Circuits derived from
BDDs as a rule are implemented with multiplexors. Their testability is investigated un-
der different fault models [3−6] but the approaches suggested did not provide100% test-
ability. In the paper [7] simple transformation of a circuit is suggested that guarantees
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100% testability for both single stuck-at fault (SAF) and PDF models. The circuits are
derived from BDDs with using multiplexors. The size of a circuit is directly propor-
tional to the given BDD size. Optimization connected with variable ordering directly
transfers to the circuit size. Disadvantage of this approach consists of using additional
input.

In the paper [8] circuits are derived by covering BDDs with CLBs. In this paper it is
revealed that each single stuck-at fault at the CLB pole is equivalent either single stuck-
at fault of the proper internal node of BDD or 10 (01) faults of edges coming from the
internal node. It is also determined that each single stuck-at fault at the CLB pole is de-
tectable. It means that the circuit guarantees 100% testability under SAF. Moreover test
for all multiple stuck-at faults may be derived directly from test for single stack-at
faults. Test for multiple stuck-at faults is 2.5 times longer [8] than test for single stuck-
at faults (at the average).

In this paper we show that circuit obtained from BDD by covering CLBs guarantees
100% testability for PDFs without an additional input. A size of the circuit is directly
proportional to the given BDD size. Optimization connected with variable ordering di-
rectly transfers to the circuit size. Moreover the lengths of tests for all PDFs of circuits
considered in this paper and the numbers of three input elements of these circuits as a
rule less than ones in the circuits implemented with multiplexors [7]. In this paper in
comparison with the paper [9] the experimental results are represented and proofs of the
theorems are given.

In Section 2 a problem of deriving special combinational circuits is discussed. In
Section 3 test pair is found on which PDF manifests itself as robust for rising and falling
transitions. In Section 4 experimental results are given.

1. A combinational circuit design

It is well known that BDD is a directed acyclic graph based on using Shannon de-
composition in each non terminal node v:

0 1i ix x
v i v i vf x f x f= == + ,

0
1( ,..., 0,..., )ix

v v i nf f x x x= = = , (1)

1
1( ,..., 1,..., )ix

v v i nf f x x x= = = ).

Here fv is the function corresponding to the node v, dashed edge points to 0ix
vf

=  and

solid edge points to 1ix
vf

= . A BDD is called ordered if variables are encountered in the
same order on all paths connecting the BDD root with a terminal node. A BDD is re-
duced if it does not contain either isomorphic subgraphs nor nodes so that

0 1i ix x
v vf f= == . Reduced and ordered BDD is a canonical representation of Boolean

function for the chosen order of variables [10].
Any path that connects the BDD root with the 1 terminal node originates the product

of the Disjoint Sum of Products (DSoP) of a function f that is represented with this
BDD. DSoP is a sum of products in which any two product cubes don’t intersect.

Let 1{ ,..., }mF f f= , be the system of Boolean functions describing a combinational
circuit behavior. Derive BDD using the same order of variables for each Boolean func-
tion from F. Join isomorphic subgraphs in the different BDDs. Combine BDDs 1 termi-
nal nodes into one 1 terminal node and their 0 terminal nodes into one 0 terminal node.
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Due to we obtain the graph with m roots and two terminal nodes. This graph jointly rep-
resents a system of m Boolean functions. It is called Shared BDD [10]. Without loss of
generality we will consider further system with one function.

In Fig. 1 a BDD for one output Boolean function is shown. For each path connecting
the BDD root with the 1 terminal node define the product of the DSoP. The DSoP of the
function f is as follows.

1 2 3 1 2 3 4 5 1 2 3 4 5 1 2 4 5 1 2 4 5 1 2 4 5

1 2 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 5.
f x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x
= ∨ ∨ ∨ ∨ ∨ ∨

∨ ∨ ∨ ∨

Eliminate from BDD all edges connected with
0 terminal node and obtain the BDD representing a
combinational circuit behavior. Call this BDD as
Circuit BDD. Cover Circuit BDD with CLBs to
get a combinational circuit executing that we use
the following rules [8].

1. CLB output corresponds to either non
terminal node or the root of the Circuit BDD.

2. CLB input corresponds to either output of
another CLB or variable of the Boolean function.

3. If two or more edges drop in a non terminal
node of the Circuit BDD then this node may be
split and covered with different CLBs.

4. The Boolean function implementing by a CLB is represented with the part
(subgraph) of a Circuit BDD that is covered by the CLB. This function is derived from
subgraph as DSoP depending on internal and input variables of the combinational
circuit.

As a result we have got the combinational circuit C.
Covering Circuit BDD in accordance with rules 1−4 we have to provide coincidence

of DSoPs system represented by the Circuit BDD with the DSoPs system derived from
the combinational circuit C with substituting the proper DSoP of CLB instead of each
internal variable of the combinational circuit C.

Consider Circuit BDD obtained from the
BDD in Fig. 1 with using 3 inputs CLBs.
Subgraphs of covering CLBs are repre-
sented in Fig. 2. The circuit obtained is
shown in Fig. 3.

Thus for each CLB we have subgraph of
the Circuit BDD and the corresponding
DSoP. CLB output may be either output of
the circuit or internal node of the circuit that
is input of another CLB.

For example DSoP 2 1 2 3 1 2 3x w x x w x x∨ ∨
corresponds to CLB3 derived from relevant
subgraph of Fig. 2. Here x2, x3 – variables
corresponding to the circuit inputs, and w1

is internal circuit variable relating to the output of CLB1.
Non terminal node of Circuit BDD corresponds to CLB output if the node is a root

of the CLB subgraph.
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2. Deriving test pair for PDF

2 . 1 .  P r e m i s e s  o f  t e s t  p a i r

We will examine one output circuit and corresponding BDD. Consider path α in the
circuit of Fig. 3 (thick line). It begins from input variable x4 and traverses the CLBs 1, 4,

5. CLB5 output is output of the circuit.
We suppose that delays of the different paths

from input to output of the same CLB are equal
as CLB is LUT based. It means if a path α
traverses certain CLB we may include any path
of the CLB subgraph (connecting the subgraph
root with its proper leaf) into the path α when
investigating delay of the path α.

Derive reduced disjoint sum of products
(reduced DSoP) for each CLB traversed by the
path α. Reduced DSoP is formed from the CLB
DSoP with including either products that contain
the input variable corresponding to the
beginning of the path α or products that contain
the internal variable corresponding to the output
of the previous CLB traversing with the path α.

For the chosen path α in Fig. 3 we have the
following reduced and non reduced DSoPs ( Fig. 2).

Reduced DSoP of CLB1: 4 5 4 5x x x x∨ , non reduced DSoP of CLB1 is the same.
Reduced DSoP of CLB4: 2 1x w , non reduced DSoP of CLB4: 2 2 2 1x w x w∨ .
Reduced DSoP of CLB5: 1 4x w , non reduced DSoP of CLB5: 1 3 1 4x w x w∨ .
Move along the path α from the output of the circuit to the beginning of the path α.

Substitute reduced DSoPs of the corresponding CLBs instead of internal nodes traversed
and remove brackets. If obtained sum of products has internal variables corresponding to
the outputs of CLBs that are not traversed with the path α, then substitute instead of these
variables the corresponding non reduced DSoPs and remove brackets till a set of internal
variables becomes empty. Denote derived set of products as Kα.

Notice that we will consider any set of products here and further also as sum of these
products (SoP).

For the path α in our example we have the result of the first substitution: 1 2 1x x w .
Then after the second substitution we have got Kα: 1 2 4 5 1 2 4 5x x x x x x x x∨ . Take into
consideration that if we would derive Equivalent Normal Form (ENF) from the circuit
considered [12] then each literal of the sum of products would be supplied with
sequence of numbers of elements corresponding to the proper circuit path.

Let products that contain literal ENF marked with the path α be called connected
with the path α.

If we exclude in ENF sequences representing paths from all literals then Kα obtained
above is a set of products connected with the path α.

Theorem 1. A set Kα contains all products connected with the path α. Kα is DSoP.
Proof. Each product from Kα contains either literal xi or literal ix  that corresponds to

the beginning of the path α and path α itself as each product is obtained with
substitutions along the path α. By the construction Kα contains all products

x1x5x4 x3 x2
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Fig. 3. Circuit C
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corresponding to the path α. Kα is DSoP as changing in any DSoP some internal variable
for corresponding DSoP originates also DSoP [13]. The theorem is proved.

Take into account that each BDD path connecting its root with 1 (0) terminal node
originates the product. If the path traverses the internal node marked with i and solid
(dashed) edge then the originated product contain xi ( ix ).

Any path connecting two internal BDD nodes originates the product in the similar
way.

For example the path of Fig. 1 (thick lines) originates product 1 2 4 5x x x x  and part of
this path connecting nodes 2 and 5 originates product 2 4x x .

Theorem 2. For each product from Kα there exists the path from the root of BDD to
its 1 terminal node that originates this product.

Proof. From covering Circuit BDD with CLBs follows that we have got all products
of DSoPs as a result of all substitutions of the proper CLB DSoPs instead of circuit
internal variables. It means that we have got all products of DSoP for each function of
the system. For the path α we execute part of substitutions, excluding internal variables
to obtain all products connected with the path α. Consequently each product connected
with the path α is among the BDD products corresponding to the one output circuit
considered. The theorem is proved.

One test pattern from a test pair detecting robust PDF of both rising and falling
transitions [14] has to turn into 1 product K from Kα possibly together with other
products from Kα. In our case the circuit behavior is represented with DSoP.
Consequently this test pattern turns into 1 only product K. This product contains either
xi, or ix .

Let K  be obtained from K with changing literal ( )i ix x  for the inversion literal. Call
K  as an addition of K.

Another test pattern of a test pair has to turn into 1 K  and into 0 DSoP derived from
BDD [13] of the circuit considered. Denote this DSoP as Dd. Let u be minimal cube
covering v1 ,v2 and ku product representing u.

To detect robust PDF it is necessary to provide the condition: product ku is
orthogonal to products of Dd excluding product K.

Take into consideration that input variable xi corresponding to the beginning of the
path α is correlated (in general case) to several nodes of BDD covered by the CLB
traversed with the path α. These nodes are marked with the same variable xi. To find test
pair we may choose any of them [8]. Denote the chosen node as v.

For example if we would consider the path traversing the same CLBs that the path α,
but beginning from the input variable x5 we have got two nodes of BDD covered by
CLB1 and marked with the variable x5.

Let ε be path from the BDD root into chosen node v. It originates the product kε.
Derive from Kα the products corresponding to the path ε that is products containing kε.
Exclude from them variables of kε. Denote the result as K*.

In the example considered a set of products corresponding to the path ε is as follows:
kε = 1 2x x , 4 5 4 5

*K x x x x= ∨ .
Divide a set K* into two subsets. Products of one subset have the literal xi, and

another – the literal ix . Exclude from them these literals and denote obtained subsets

i

*
xK , 

i

*
xK  correspondingly. These subsets represent functions implemented in nodes that
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are incidental to right (solid) and left (dashed) edges of
the node v (Fig. 4). These functions are different by the
construction of BDD (in this paper we always means
ROBDD)

In the example we have: 5i

*
xK x= , and 5i

*
xK x= .

Subsets 
i

*
xK , 

i

*
xK  are determined with the pole v

and do not depend on the chosen path ε (Fig. 4).
As the subsets represent different functions then

there exists Boolean vector γ on which they take different values. Let γ turns into 1 
i

*
xK

and into 0 
i

*
xK , k* is a product representing γ.

In the example considered subsets 
i

*
xK , 

i

*
xK  depend on the only variable x5. Then

we have: 
5

γ 0
x

= , *
5k x= .

First add literal xi to k* and then the product kε. Denote the result K ′ , * iK k x kε′ =
is absorbed by the only product K from Kα . It follows from the theorem 1 and the
construction of Boolean vector γ. Let K ′  be addition of K ′  relative to xi , then K ′  is
absorbed by K . It follows from the construction of Boolean vector γ and K ′ . In the
example: 1 2 4 5K x x x x′ = , 1 2 4 5K x x x x′ = . Here K, K  coincide with K ′ , K ′ .

Two products are orthogonal if their cubes don’t intersect.
A product k is orthogonal to the sum of products (SoP) if k is orthogonal to each

product of the SoP.
Theorem 3. K ′  is orthogonal to Dd.
Proof. We have to show that K ′  is orthogonal to products of *K  that are obtained

from Kα with using path ε in above mentioned way. Remind that K ′  contains
subproduct kε. Product K ′  is orthogonal to set of products 

i

*
xK  under construction.

Product K ′  is also orthogonal to set of products 
i

*
i xx K  hence K ′  is orthogonal to *K .

The theorem is proved.
Let Boolean vectors **γ , γ  turns into 1 products ,K K′ ′  correspondingly and these

vectors don’t differ with variables that are absent in the products ,K K′ ′ . Let u be
minimal cube covering these vectors and ku – product representing this cube.

Theorem 4. Boolean vectors **γ , γ  comprise test pairs detecting robust PDF of the
path α for both rising and falling transitions.

Proof. Vector *γ  turns into 1 product K (K from Kα) as K absorbs K ′  and vector *γ

turns into 1 product K  as K  absorbs K ′ . Except *γ  turns into 0 Dd. Product ku is
orthogonal to products of Dd that does not contain kε as subproduct. Except (by the
construction) ku is orthogonal to a set of products 

i

*
xK  and a set of products 

i

*
xK  without

the product K. It means [13] that on vectors **γ , γ  PDF of α manifests itself as robust
for both falling and rising transitions. The theorem is proved.

Fig. 4. Fragment of BDD
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2 . 2 .  A l g o r i t h m  o f  d e r i v i n g  t e s t  p a i r

Remind that each path connecting two nodes of BDD is related to the product
originated by the path. Two paths are compatible if their originated products are not
orthogonal.

The algorithm is partly (steps 1−5) based on results represented in [8] and connected
with finding test pattern for single stuck-at fault of the circuit obtained by covering
BDD with CLBs. We mean single stuck-at fault of the CLB pole directly connected
with a circuit input.

1. Consider a path that begins from the node in which edge corresponding to xi (solid
edge) goes from the node v and ends into 1 terminal node of the BDD. Denote the path
as η.

2. Look through paths that begin in the node in which edge corresponding to ix
(dashed edge) goes from the node v and ends into 0 terminal node of BDD in order to
find path compatible with η. If we find such path then go to step 5. Otherwise return to
step 1. If all paths η have looked through go to step 3.

3. Consider a path that begins from the node in which edge corresponding to ix
(dashed edge) goes from v and ends into 1 terminal node of BDD. Denote the path as η.

4. Look through paths that begin in the node in which edge corresponding to xi (solid
edge) goes from v and ends into 0 terminal node of BDD in order to find path
compatible with η. If we find such path then go to step 5. Otherwise return to step 3.

5. Obtained path denote as ζ. Conjunction of products originated by the paths η, ζ,
represents γ.

6. Derive Boolean vectors **γ , γ  in above mentioned way. These vectors have to

turn into 1 the proper products ,K K′ ′ . Except, the Boolean vectors **γ , γ do not differ

with variables that are absent in products ,K K′ ′ .
In the example:

* 1 2 3 4 5γ
0 0 0 1 0
x x x x x

= , * 1 2 3 4 5γ
0 0 0 0 0
x x x x x

= , 1 2 4 5K x x x x′ = , 1 2 4 5K x x x x′ = .

In the products ,K K′ ′  variable x3 is absent. In the Boolean vectors **γ , γ  this variable
takes the 0 value.

In Fig. 5 thick lines represent paths correspond-
ing to **γ , γ .

To detect robust PDF of α for rising and falling
transitions we need triplets v1, v2, v1 or v2, v1, v2.
Integrating triplets of all circuit paths we derive test
T for all path delay faults.

Theorem 5. Test T detects any PDF of a circuit
(single and multiple).

Proof. As test T consists of pairs on which PDF
manifests itself as robust and includes test pair for
each path of a circuit then each single PDF is
detectable with test T. As each single PDF manifests itself as robust on the proper pair
of test T consequently any multiple PDF is detectable at the expense of single PDF
comprising multiple fault. The theorem is proved.
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Fig. 5. Representing **γ , γ
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Notice that all results derived for BDD easily may be spread to Shared BDD.

3. Experimental results

For the experiments we used the benchmarks LGSynth’91 [15].
In Table 1, the names of the benchmarks are given in the first column. The numbers

of inputs and outputs are given in the second and the third columns, respectively.
In section MUX-map, the results are given for a direct mapping of BDDs by

multiplexors as described in [6]. The number of nodes in BDD (NoN), the number of
paths (NoP), and the PDF coverage (PDFC) are given in corresponding columns. This
technique doesn’t provide the 100% PDF covering. To provide 100% PDF covering for
circuits in the frame of this technique it is necessary an additional input [7]. Using an
additional input increases the number of nodes in BDD (and consequently the number
of multiplexors) and the number of paths [7] for the same benchmark.

In section LUT-map, the results are given for the technique described above for 3
inputs CLBs. The number of CLBs in the circuit (NoC), the number of paths (NoP), and
the PDF coverage (PDFC) are given in corresponding columns.

Experimental results

MUX-map LUT-mapName in out NoN NoP PDFC NoC NoP PDFC
5xpl 7 10 90 273 89.0 69 175 100.0
C17 5 2 12 22 68.1 6 12 100.0
alu2 10 6 259 873 86.9 246 929 100.0
b9 41 21 237 1773 64.6 141 380 100.0

clip 9 5 256 954 79.4 235 597 100.0
conl 7 2 20 47 74.4 9 18 100.0

count 35 16 251 2248 66.1 199 642 100.0
il 25 13 60 137 74.4 41 85 100.0
15 133 66 313 44198 61.3 169 941 100.0

t481 16 1 34 4518 86.1 26 1226 100.0
tcon 17 16 34 40 100.0 16 32 100.0
9sym 9 1 35 328 72.5 27 195 100.0
f51m 8 8 72 326 99.3 58 139 100.0
z4ml 7 4 66 175 77.1 50 118 100.0
x2 10 7 75 188 72.3 61 251 100.0

Experimental results showed that the number of CLBs and the number of paths are
as a rule less then the number of multiplexers and the number of paths for the same
benchmark.

Conclusion

Special combinational circuits are investigated. They are derived by covering BDDs
with LUT based CLBs. It is found out that PDF of each path of such circuits manifests
itself as robust. Except for delays of rising and falling transitions of the same path there
exist triplets v1, v2, v1 or v2, v1, v2 detecting these delays. Triplets are found with BDD
analyses based on finding test pattern for single stuck-at fault of CLB input directly
connected with a circuit input. Experimental results showed that lengths of tests for
PDFs of investigated circuits and the numbers of three input elements of these circuits
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as a rule less than ones in circuits implemented with multiplexors. Investigated circuits
do not demand additional input to provide 100% testability for robust PDFs.
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Сингх В. (Индийский институт технологий, Бомбей). Построение тестов для неисправно-
стей задержек робастно тестируемых путей для комбинационных схем, построенных
покрытием BDD-графов.
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При тестировании неисправностей задержек путей особенно важно обнаружение роба-
стно тестируемых путей. К сожалению, не все пути в произвольных схемах являются роба-
стно тестируемыми. Установлено, что неисправность задержки каждого пути схемы, полу-
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ченной покрытием системы ROBDD-графов программируемыми логическими блоками с
сохранением системы ОДНФ (ортогональных дизъюнктивных нормальных форм), пред-
ставляемой графами, проявляется как робастная. Предложен алгоритм построения пары
тестовых наборов, обнаруживающей робастно тестируемую неисправность задержки пути.
Найденная пара может быть использована для тестирования обоих перепадов значений
сигналов пути при перестановке элементов пары. Тест, обнаруживающий робастно тести-
руемые неисправности задержек всех одиночных путей, обнаруживает все кратные неис-
правности задержек путей схемы и одиночные константные неисправности на полюсах ло-
гических элементов схемы.


