С.Л. Блохина, В.П. Середина

ГУМУСНОЕ СОСТОЯНИЕ ФОНОВЫХ ПОЧВ КОНДАКОВСКОГО МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДНОГО СЫРЬЯ

Аннотация. Представлены результаты полевых и экспериментальных исследований почв Кондаковского нефтяного месторождения. Изучены фоновые почвы, качественный состав гумуса и особенности их гумусного состояния.

Ключевые слова: почва, гумусное состояние, нефтяное месторождение, буферность.

В последние десятилетия в связи с открытием крупных нефтяных и газовых месторождений на севере Томской области появилась необходимость изучения почвенного покрова с целью более рационального его использования и своевременного контроля экологического состояния почв. На данный момент этот регион рассматривается как основная топливно-энергетическая и сырьевая база страны, при разработке которой будут использоваться малоосвоенные территории, более суровые по природным условиям, отличающиеся слабой устойчивостью и весьма малым потенциалом для самоочищения и самовосстановления [1]. Необходимость изучения фоновых (незагрязненных) почв осваиваемых нефтегазовых комплексов состоит в том, что существует потребность в уточнении всех свойств и процессов, протекающих в почвах. Кроме того, результаты данных исследований в дальнейшем могут быть использованы в целях почвенно-экологического мониторинга и разработки конкретных мер по рекультивации нарушенных и загрязненных территорий с учетом их специфических особенностей.

Объекты и методы исследований

Объектом исследования являются фоновые почвы Кондаковского лицензионного блока, который в будущем будет разрабатываться при нефте- и газодобыче. В соответствии с почвенно-географическим районированием [2] данный блок относится к среднетаежной подзоне Западной Сибири и в административном отношении располагается в Александровском районе Томской области, на правобережье реки Оби. С целью детального изучения почвенного покрова данной территории проводились инженерно-экологические изыскания методом маршрутов. Для изучения гумусного состояния почв были отобраны образцы основных представителей автоморфного (подзолистые), полугидроморфного (болотно-подзолистые) и гидроморфного (болотные верховые и низинные) рядов.

Лабораторно-аналитические исследования выполнены с использованием общепринятых в почвоведении методов [3]: гигроскопическая влага, зольность, общий органический углерод (гумус) методом И.В. Тюрина, рН водной и солевой вытяжек потенциометрическим методом, гидролитическая ки-

слотность по Каппену, обменные Ca^{2+} , Mg^{2+} , их сумма комплексонометрическим методом, обменные H^+ и Al^{3+} по И.А. Соколову. Определение группового и фракционного состава гумуса выполнено по схеме В.И. Тюрина в модификации В.В. Пономаревой и Т.А. Плотниковой [4], оценка гумусного состояния почв проведена в соответствии с показателями, предложенными Л.А. Гришиной и Д.С. Орловым [5].

Систематический список почв

Кондаковский лицензионный блок по агроклиматическому районированию [6] входит в прохладный, значительно увлажненный район. Эволюция почв гумилных областей равнинных слаборасчлененных территорий Запалной Сибири способствует сильной заболоченности и слабому проявлению автоморфного почвообразования. Эта особенность во многом определяет условия формирования и свойства почв Кондаковского нефтяного месторождения [7]. Своеобразные природные условия изучаемой территории: пространственная и внутрипрофильная изменчивость литологического и гранулометрического состава почвообразующих пород, различная степень дренированности территории, продолжительное сезонное промерзание, сочетание различных типов растительности - обусловили проявление процессов оподзоливания, поверхностного и глубинного оглеения. Согласно классификации и лиагностике [8], современный почвенный покров исследуемой территории в связи со своеобразным сочетанием природных условий сложен, разнообразен и представлен следующими типами почв (табл. 1): подзолистыми, болотноподзолистыми и болотными. В соответствии с классификацией почв России [9] их можно отнести к двум основным стволам: постлитогенному и органогенному. В постлитогенном стволе выделен отдел текстурно-дифференцированных почв (типы подзолистых и болотно-подзолистых), а в органогенном – отдел торфяных почв (типы олиготрофных и эутрофных).

Автоморфные почвы данной территории, представленные типом подзолистых почв, развиваются преимущественно на легких породах под хвойными или смешанными лесами с бедным, но развитым мохово-лишайниковым напочвенном покровом. Это приводит к незначительному накоплению опада с кислой реакцией среды, что тормозит развитие гумусового горизонта. Общими свойствами этих почв являются: обогащенность верхних горизонтов кремнеземом при значительном выносе полуторных оксидов, глубинная глееватость, кислая реакция среды (р $H_{\rm con}$ варьирует от 3,71 до 4,60) и ненасыщенность основаниями (65–67%). В гранулометрическом составе преобладают фракции связанного песка и отмечается невысокое процентное содержание физической глины. Распределение илистой фракции свидетельствует о проявлении элювиально-иллювиального процесса, который также подтверждается дифференциацией почвенного профиля по морфологическим признакам.

Полугидроморфные болотно-подзолистые почвы формируются на пологих гривах и в понижениях водоразделов и террас под заболоченными темнохвойными и лиственными лесами. Специфической особенностью болотно-подзолистых почв является их тяжелый гранулометрический состав.

Таблица 1

Систематический список почв Кондаковского лицензионного блока

Год издания классификации	Ствол	Отдел	Тип	Подтип	Род	Вид	Разновидность
1	2	3	4	5	9	7	8
1977	-	-	Подзолистая	Собственно подзолистая	Обычная	Мелкая	Средне- суглинистая
M	Гелкоподзолистая	Мелкоподзолистая среднесуглинистая почва A_0 $(0-2)+A_1A_2$ $(2-13)+A_2(13-17)+A_2B_{fc}(17-44)+B_{fc}(44-70)+BC(70-140)$	тва A ₀ (0-2)+A	$_{1}A_{2}(2-13)+A_{2}(13-1)$	$7)+A_2B_{fe}(17-44)+I$	B _{fe} (44-70)+BC(70-	140)
2004	Постлитогенная	Текстурно- дифференцированная	Подзолистая	Типичная	I	Поверхностно осветленная	Средне- суглинистая
Подзоли	Подзолистая поверхностно	стно осветленная среднесуглинистая $O(0-2)$ +AEL $(2-13)$ +EL $(13-17)$ +BEL $(17-44)$ +BT $_{\rm Ie}(44-70)$ +BTC $(70-140)$	глинистая О(0-	-2)+AEL(2-13)+EL	(13-17)+BEL(17-	44)+BT _{fe} (44-70)+B	TC(70-140)
1977	Ι	ı	Подзолистая	Собственно подзолистая	Псевдофибровая	Мелкая	Супесчаная
	Мелкоподзс	одзолистая псевдофибровая супесчаная почва Oч(0–4)+A ₀ A ₁ (4–16)+A ₂ (16–31)+A ₂ B _{fe} (31–57)+ B _{1fe} (57–92)+B _{2fe} (92–129)+BC _{fe} (129–190)+C _{fe} (190–216)	я супесчаная п +В _{2fe} (92–129)+	лофибровая супесчаная почва Oч(0–4)+ $A_0A_1(4-16)+A_1$ В $_{1rc}(57-92)+B_{2rc}(92-129)+BC_{rc}(129-190)+C_{rc}(190-216)$	$(4-16)+A_2(16-31)$ (190-216)	$+A_2B_{fe}(31-57)+$	
2004	Постлитогенная	Текстурно- дифференцированная	Подзолистая	Типичная	ı	Мелкая	Супесчаная
	Подзолиста	истая мелкая супесчаная почва $\mathrm{TO}(0-4)+\mathrm{OA}_1(4-16)+\mathrm{EL}(16-31)+\mathrm{BEL}_{re}(31-57)+\mathrm{BT}_{1re}(57-92)+\mathrm{BT}_{2re}(92-129)+\mathrm{BTC}_{re}(129-190)+\mathrm{C}_{re}(190-216)$	очва ТО(0–4)+ 92–129)+ВТС _{fe}	иная почва ${ m TO}(0{ ext{}4}) + { m OA}_1(4{ ext{}16}) + { m EL}(16{ ext{}31}) + { m I}$ ${ m BT}_{2^{16}}(92{ ext{}129}) + { m BTC}_{7^6}(129{ ext{}190}) + { m C}_{16}(190{ ext{}216})$	31)+BEL _{fe} (31–57)+ -216)	- BT _{1fe} (57–92)+	
1977	ı	ı	Болотно- подзолистая	Торфянисто- подзолистая глеевая	Грунтового увлажнения	Мелкая	Средне- суглинистая
	Торфя	Торфянисто-мелкоподзолисто-глеевая грунтового увлажнения среднесуглинистая почва $T(0-25)+A_1A_2$ (25–35)+ $B_{1feg}(33-62)+B_{2fe,g}(62-87)+BC_{fe,g}(87-105)$	то-глеевая грул $(5-35) + B_{1 \text{feg}}(35)$	-мелкоподзолисто-глеевая грунтового увлажнения среднесуглин $\Gamma(0-25)+A_1A_2$ (25–35)+ $B_{1feg}(33-62)+B_{2fe,g}(62-87)+BC_{fe,g}(87-105)$	я среднесуглинист +ВС _{fe,g} (87–105)	гая почва	
2004	Постлитогенная	Текстурно- дифференцированная подзолистая	Болотно-подзолистая	Грубогумусовая	I	Поверхностно осветленная	Средне- суглинистая
	Болотн	Болотно-подзолистая грубогумусовая поверхностно осветленная среднесуглинистая почва $T(0-25)+$ AEL (25–35)+ BT $_{1 { m teg}}(33-62)+$ BT $_{2 { m teg}}(62-87)+$ BT $_{{ m Ce}_{\rm g}}(87-105)$	лмусовая повер -35)+ ВТ _{1feg} (33-	ллолистая грубогумусовая поверхностно осветленная среднесуглини $\Gamma(0-25)+$ AEL (25–35)+ BT $\Gamma_{\rm frig}(33-62)+$ BT $\Gamma_{\rm 2fe,g}(62-87)+$ BT $\Gamma_{\rm frig}(87-105)$	ая среднесуглинис)+ВТС _{fe,g} (87–105)	стая почва	

Окончание табл. 1

8	I		I		I		I	
7	Торфяная		Среднемощная	2)	На средних торфах	+G(120–150)	На средних торфах	3-120)+G(120-150)
9	Обычная	$)+T_{2}(22-32)$	I	$12-22$)+ $T_2(22-3)$	Обычная	$-58)+T_3(58-120)$	I	$\Gamma_2(35-58)+T_3(58)$
5	Болотная торфяная	Болотная верховая торфяная Оч $(0{\text -}10){\text +}{\rm T}_1(12{\text -}22){\text +}{\rm T}_2(22{\text -}32)$	Типичная	Торфяная олиготрофная среднемощная ТО (0–10)+ $\mathrm{T_{i}(12–22)}$ + $\mathrm{T_{2}(22–32)}$	Низинная торфяная	$16)+T_1(16-35)+T_2(35-$	Типичная	$\Gamma(2-16)+T_1(16-35)+T$
4	Болотная верховая	ховая торфяная	Олиготрофная	офная среднемс	Болотная ни- зинная	$A_0(0-2)+A_T(2-1)$	Эутрофная	рфах ТО(0-2)+7
3	I	Болотная вер	Торфяная	Торфяная олиготр	ı	Болотная низинная торфяная $A_0(0-2)+A_1(2-16)+T_1(16-35)+T_2(35-58)+T_3(58-120)+G(120-150)$	Торфяная	${ m Горфяная}$ эутрофная на средних торфах ${ m TO}(0-2)+{ m T}(2-16)+{ m T_1}(16-35)+{ m T_2}(35-58)+{ m T_3}(58-120)+{ m G}(120-150)$
2	ı		Органогенная		-	Болотна	Органогенная	Торфяная эут
1	1977		2004		1977		2004	

В распределении физической глины и илистой фракции наблюдается заметное увеличение к породе, что ухудшает дренажные свойства, приводит к образованию торфяного горизонта и проявлению глеевых процессов в верхней толще. Реакция среды этих почв кислая (р $H_{\rm con}$ изменяется в пределах от 3,40 до 5,00). Валовой химический анализ обнаруживает меньшую обогащенность болотно-подзолистых почв кремнеземом и более высокое содержание полуторных оксидов железа и алюминия, которые являются главными компонентами минеральной части почв.

Гумусное состояние почв

В составе гумуса подзолистых почв Кондаковского месторождения по всему профилю фульвокислоты значительно преобладают над гуминовыми кислотами. В этих почвах отношение $C_{r,\kappa}/C_{\phi,\kappa}$ равно 0,3–0,4, что указывает на фульватный тип гумуса. Этот интервал сужается в нижних горизонтах до 0,2. В группе гуминовых кислот преобладает фракция, связанная с подвижными полуторными оксидами (8,14–9,15%), а наиболее ценная, связанная с кальцием, имеет низкие значения (3,63–4,64%). Фульвокислоты представлены агрессивными фракциями. Величина негидролизуемого остатка колеблется от 37 до 42% от общего углерода, что свидетельствует о высоком содержании трудноминерализуемых веществ. Агрессивность и мобильность гумуса такого типа способствуют развитию процессов элювиирования и подзолообразования.

В составе гумуса торфянисто-мелкоподзолистой грунтово-глеевой среднесуглинистой почвы прослеживаются аналогичные закономерности, что и в составе гумуса подзолистых почв. Показатель величины негидролизуемого остатка постепенно увеличивается с глубиной профиля. Необходимо отметить, что для аналогичных почв характерно постепенное уменьшение содержания органического вещества с глубиной профиля. Подобное явление встречается во многих таежных подзолистых почвах Европы и Западной Сибири [6]. Однако такое распределение не свидетельствует о том, что в этих почвах нет иллювиирования.

Единство и самобытность холодных гумидных областей заключаются в экстремальном сочетании тепла и влаги, господстве олиготрофных растительных сообществ с малой емкостью биологического круговорота, преимущественно напочвенном поступлении растительного опада, бедности, однообразии и пониженной биохимической активности микрофлоры. Эти особенности влияют на основные характеристики гумусного состояния исследуемых почв, которые в совокупности отражают уровни накопления гумуса, его профильное распределение и качественный состав (табл. 2).

В соответствии с критериями, предложенными в [5], подзолистые почвы Кондаковского нефтяного месторождения характеризуются мощной подстилкой, состоящей из опада, отмершей растительности и переплетающих их корней. Однако содержание гумуса в верхних гумусовых горизонтах и его запасы оцениваются как очень низкие. Количество гумуса с глубиной постепенно убывает. Для исследуемых почв характерна средняя и слабая степень гумификации органического вещества, отмечается среднее содержание свободных ГК и высокое содержание прочно связанных ГК.

Таблица 2 Показатели гумусного состояния фоновых почв Кондаковского нефтяного месторождения

		T
Показатель, единицы измерения	Величина	Уровень, характер проявления
Мелкоподзолистая псевдофи		углинистая почва
Мощность подстилки, см	5	Мощная
Содержание гумуса в гумусных горизонтах, %	1,43	Очень низкое
Запас гумуса в слое 0–20 см, т/га	20	Очень низкий
Профильное распределение гумуса в метровой толще	-	Постепенно убывающее
Степень гумификации органического вещества, %	19	Слабая
Тип гумуса, С _{г.к} /С _{ф.к}	0,5	Фульватно-гуматный
Содержание «свободных» ГК, % к сумме ГК	50	Среднее
Содержание ГК, связанных с Ca ²⁺ , % к сумме ГК	20	Низкое
Содержание прочно связанных ГК, % к сумме ГК	30	Высокое
Мелкоподзолистая иллювиально-	железистая лег	косуглинистая почва
Мощность подстилки, см	8	Мощная
Содержание гумуса в гумусных горизонтах, %	1,01	Очень низкое
Запас гумуса в слое 0–20 см, т/га	14	Очень низкий
Профильное распределение гумуса в метровой толще	_	Постепенно убывающее
Степень гумификации органического вещества, %	21	Средняя
Тип гумуса, С _{г.к} /С _{ф.к}	0,4	Фульватный
Содержание «свободных» ГК, % к сумме ГК	46	Среднее
Содержание ГК, связанных с Ca ²⁺ , % к сумме ГК	18	Очень низкое
Содержание прочно связанных ГК, % к сумме ГК	36	Высокое
Торфянисто-мелкоподзолистая грун	тово-глеевая с	реднесуглинистая почва
Содержание гумуса в гумусных горизонтах, %	1,09	Очень низкое
Запас гумуса в слое 0–20 см, т/га	22	Очень низкий
Профильное распределение гумуса в метровой толще	_	Резко убывающее
Степень гумификации органического вещества, %	29	Средняя
Тип гумуса, $C_{r.\kappa}/C_{\phi.\kappa}$	0,4	Фульватный
Содержание «свободных» ГК, % к сумме ГК	35	Низкое
Содержание ГК, связанных с Са ²⁺ , % к сумме ГК	28	Низкое
Содержание прочно связанных ГК, % к сумме ГК	36	Высокое

Близкими свойствами обладает гумус наиболее распространенных на территории месторождения торфянисто-мелкоподзолистых грунтово-глеевых почв. Данные почвы характеризуются очень низкими содержанием гумуса в верхних гумусных горизонтах и его запасами. Распределение гумуса по профилю почв резко убывающее. Характерна средняя степень гумификации органического вещества, что связано с биоклиматическими условиями и характером растительности. Залегающие непосредственно под торфом или очесом минеральные горизонты имеют фульватный тип гумуса с низким содержанием ГК фракций 1, 2 и относительно высоким содержанием ГК фракции 3. Как для подзолистых, так и торфянисто-мелкоподзолистых грунтово-глеевых почв характерны слабое образование аккумулятивной формы гумуса (гуминовых кислот), относительно высокое содержание ГК свободных и прочно связанных с глинистыми минералами. Содержание гуматов кальция и связанных с ними фульвокислот составляет незначительную часть органического углерода.

Разработка нефтяных месторождений создает мощное техногенное воздействие на окружающую среду. Нефть, являясь комплексным загрязнителем, несет признаки, указывающие на связь с гидротермальными минералообразующими растворами. К их числу относится наличие в нефти тяжелых металлов. Связывание тяжелых металлов-загрязнителей в почве регулируется, главным образом, емкостью катионного обмена, которая в почвах определяется в значительной мере их гумусным состоянием. Гумусовые вещества служат геохимическим барьером и активно регулируют геохимические потоки металлов в экосистемах. Способность гумуса связывать тяжелые металлы в труднодоступные формы, уменьшая подвижность, значительно снижает уровень их поступления в растения [10]. Можно полагать, что в исследуемых почвах, характеризующихся невысоким содержанием в составе гумуса гуминовых кислот, негативное влияние на растения проявится при более низкой концентрации загрязнителей.

Гумусное состояние, кислотно-щелочные условия и гранулометрический состав определяют возможность и интенсивность закрепления пролуктов техногенеза в почвах и служат базовыми параметрами для оценки воздействия промышленных выбросов на экосистемы в целом. Известно [11], что основными факторами, определяющими буферность почв, являются содержание и состав гумуса. Наибольшей буферной емкостью и способностью снижать негативное влияние загрязняющих веществ на растительные и животные организмы обладают почвы с высоким содержанием гумуса, тяжелым гранулометрическим составом и высокой емкостью катионного обмена. Механизм противодействия техногенному потоку обусловлен химическими особенностями функциональных групп гумусовых кислот [12], способных к образованию электровалентных, ковалентных связей и внутрикомплексных соединений. Олнако невысокое относительное солержание гуминовых кислот в почвах Кондаковского месторождения снижает возможность связывания токсичных элементов в малоподвижные и труднодиссоциирующие соединения, усиливая влияние техногенных нагрузок на природную среду.

Своеобразные природные условия изучаемой территории, сочетание различных типов растительности, особенности литологического и гранулометрического состава почвообразующих пород, а также различная степень дренированности территории обусловили проявление процессов оподзоливания, поверхностного и глубинного оглеения и господство в почвенном покрове подзолистых, болотно-подзолистых и болотных почв. Для всех изученных почв характерно очень низкое содержание гумуса и его запасов, а также низкое содержание наиболее ценной фракции гуминовых кислот, связанных с кальцием. Наличие в подзолистых почвах мощной подстилки, представленной грубым полуразложившимся органическим веществом, а в болотноподзолистых почвах - торфяного горизонта не способствует усилению их буферных свойств. Интегральные характеристики гумусного состояния фоновых подзолистых и торфяно-подзолистых почв (преимущественно фульватный тип гумуса, преобладание во фракционном составе агрессивных фракций фульвокислот) свидетельствуют о низкой буферности исследуемых почв. В комплексе с суровыми биоклиматическими условиями изученные показатели гумусного состояния подтверждают низкую устойчивость почв исследуемого Кондаковского месторождения к техногенным нагрузкам, в том числе и нефтяным.

Литература

- 1. *Середина В.П., Андреева Т.А., Бурмистрова Т.И., Терещенко Н.Н.* Нефтезагрязненные почвы: свойства и рекультивация. Томск: Изд-во ТПУ, 2006. 270 с.
- 2. Почвенно-географическое районирование СССР. М.: Изд-во АН СССР, 1962. С. 73–75.
- 3. Воробьева Л.А. Химический анализ почв. М.: Изд-во МГУ, 1998. 272 с.
- 4. *Пономарева В.В., Плотникова Т.А.* Определение группового и фракционного состава гумуса по схеме И.В. Тюрина, в модификации В.В. Пономаревой и Т.А. Плотниковой // Агрохимические методы исследования почв. М.: Наука, 1975. С. 47–55.
- 5. Орлов Д.С. Химия почв. М.: Изд-во Моск. ун-та, 1985. С. 275.
- 6. Гаджиев И.М., Овчинников С.М. Почвы средней тайги Западной Сибири. Новосибирск: Наука, 1977. 150 с.
- 7. *Блохина С.Л.* Свойства почв Кондаковского лицензионного блока // Материалы LVII научной конференции Биологического института «Старт в науку». Томск: ТГУ, 2008. С. 39.
- 8. Классификация и диагностика почв СССР. М.: Колос, 1977. 225 с.
- 9. Классификация почв России. М.: Почвенный ин-т им. В.В. Докучаева РАСХН, 2004. С. 136.
- Ильин В.Б. Тяжелые металлы в системе почва–растение. Новосибирск: Наука, 1991.
 151 с.
- 11. Перельман А.И., Касимов Н.С. Геохимия ландшафта. М.: Астрея, 1999. 768 с.
- 12. *Орлов Д.С.* Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990. 25 с.