2012 Математика и механика № 4(20)

УДК 512.541

М.И. Рогозинский

О k-ВПОЛНЕ ТРАНЗИТИВНОСТИ ВПОЛНЕ РАЗЛОЖИМЫХ АБЕЛЕВЫХ ГРУПП БЕЗ КРУЧЕНИЯ

Вводится понятие k-вполне транзитивности для групп без кручения, исследуется вопрос о k-вполне транзитивности вполне разложимых групп из некоторых классов.

Ключевые слова: абелева группа, к-вполне транзитивность.

Понятие вполне транзитивной группы без кручения впервые появилось в работе П.А. Крылова [2]: группа без кручения G называется вполне транзитивной, если для любых элементов $a,b \in G$ из $\chi(a) \leq \chi(b)$, где $\chi(a),\chi(b)$ — характеристики элементов a и b, следует существование $\theta \in E(G)$ со свойством $\theta(a) = b$. Заметим, что в [2] группа с указанным выше свойством называлась транзитивной.

В [3] рассматривается понятие «вполне транзитивность» для произвольной абелевой группы. Затем это понятие уточняется в [4]. При этом введенное понятие вполне транзитивной абелевой группы согласуется с рассматриваемыми ранее определениями вполне транзитивной p-группы и вполне транзитивной группы без кручения.

Интерес к изучению вполне транзитивных абелевых групп продиктован следующими соображениями. Вполне транзитивными группами являются группы, обладающие различной структурой, однако имеющие фундаментальное значение в теории *p*-групп и групп без кручения. К вполне транзитивным группам относятся, например, *p*-группы без элементов бесконечной высоты, *p*-адические алгебраически компактные группы и однородно сепарабельные группы, которым посвящены работы Р. Бэра, Ю.Л. Ершова, Л.Я. Куликова, А.П. Мишиной, Л. Фукса и других алгебраистов, квазисервантно инъективные группы без кручения, сильно однородные группы, интенсивно изучаемые в последнее время. Также понятие вполне транзитивной группы тесно связано с изучением вполне характеристических подгрупп абелевых групп [4]. Вполне транзитивные группы без кручения интенсивно изучались в работах [5–9] и др.

В [10] Кэрролл вводит понятие k-вполне транзитивной p-группы, тем самым обобщая понятие вполне транзитивности для p-групп.

Пусть G-p-группа и $k\in N$. Группа G называется k-вполне транзитивной, если из выполнения условий для кортежей $X=(x_1,x_2,...,x_k), Y=(y_1,y_2,...,y_k)$ элементов группы G:

- (1) $H(x_i) \le H(y_i), i = \overline{1, k};$
- (2) кортеж X высотно независим, в том смысле, что при $i \neq j$ $h(rx_i) \neq h(sx_j)$ для любых $r,s \in \mathbf{Z}$, кроме случая $rx_i = sx_j = 0$,

следует существование эндоморфизма $\theta \in E(G)$ группы G со свойством $\theta(x_i) = y_i, i = \overline{1,k}$.

Для рассмотрения групп без кручения нам понадобятся следующие понятия [11].

Xарактеристикой называется последовательность неотрицательных целых чисел и символов ∞ . Обозначим через $\mathfrak X$ множество всех таких последовательностей. Если $\chi_1=(k_1,...,k_n,...)$ и $\chi_2=(l_1,...,l_n,...)$, то полагают $\chi_1\leq \chi_2$ тогда и только тогда, когда $k_i\leq l_i$ для всех $i\in N$.

Пусть G — группа без кручения. Для элемента $g \in G$ максимальное целое неотрицательное число k при данном простом числе p, для которого в группе G разрешимо уравнение $p^kx=g$, называется p-высотой элемента g и обозначается $h_p(g)$. Если уравнение разрешимо для любого $k \in N$, то полагаем $h_p(g) = \infty$. Последовательность p-высот

$$\chi(g) = (h_{p_1}(g), h_{p_2}(g),...),$$

где $p_1,p_2,...$ – последовательность всех простых чисел, упорядоченных по возрастанию, называется xарактеристикой или высотной последовательностью элемента g. Так как характеристика элемента g зависит от группы G, то иногда пишут $\chi_G(g)$.

Если $\chi_1=(k_1,...,k_n,...)$ и $\chi_2=(l_1,...,l_n,...)$ — характеристики, то их сумма определяется как характеристика

$$\chi_1 + \chi_2 = (k_1 + l_1, ..., k_n + l_n, ...),$$

а их разность при $\chi_2 \le \chi_1$ определяется как характеристика

$$\chi_1 - \chi_2 = (k_1 - l_1, ..., k_n - l_n, ...)$$

где ∞ плюс (минус) нечто есть ∞ . Заметим, что в [11] для указанных операций с характеристиками используется мультипликативная запись, здесь же будет удобна аддитивная форма записи. Характеристика называется идемпотентной, если $\chi + \chi = \chi$.

Две характеристики $\chi_1=(k_1,...,k_n,...)$ и $\chi_2=(l_1,...,l_n,...)$ называются эквивалентными, если неравенство $k_n\neq l_n$ имеет место лишь для конечного числа номеров n и только тогда, когда k_n и l_n конечны. Класс эквивалентности во множестве характеристик называется munom. Если $\chi(g)$ принадлежит типу t, то говорят, что элемент g имеет тип t, и пишут t(g)=t или $t_G(g)=t$, если необходимо указать, что тип элемента g рассматривается в группе G.

Группа без кручения G называется однородной (типа t), если все ее ненулевые элементы имеют один и тот же тип t.

Тип обычно представляется характеристикой, принадлежащей этому типу. Другими словами, пишут

$$t = (k_1, ..., k_n, ...)$$
,

понимая, что характеристику $(k_1,...,k_n,...)$ можно заменить эквивалентной. Для двух типов t_1 и t_2 полагают $t_1 \le t_2$, если существуют две такие характеристики χ_1 и χ_2 , принадлежащие типам t_1 и t_2 соответственно, что $\chi_1 \le \chi_2$.

Обозначим через Π — множество всех простых чисел, упорядоченных по возрастанию. Тип t называется p_k -делимым, если для всех характеристик $\chi \in t$, где $\chi = (\chi^1, \chi^2, ..., \chi^k, ...)$, имеем $\chi^{(k)} = \infty$. Заметим, что если G — однородная группа типа t и тип t p_k -делим, то $p_k G = G$.

Семейство групп без кручения $\{G_i\}_{i\in I}$ называется жесткой системой, если $Hom(G_i,G_j)\cong \begin{cases} R\subseteq \mathbf{Q}, & i=j,\\ 0, & i\neq i. \end{cases}$

Далее в работе под словом группа будем понимать абелеву группу без кручения. В настоящей работе рассматривается обобщение понятия вполне транзитивности для групп без кручения.

Определение 1 [12]. Пусть G – группа без кручения и $k \in N$. Группу G назовем k-вполне транзитивной, если для любых двух кортежей длины k $X = (x_1, x_2, ..., x_k), Y = (y_1, y_2, ..., y_k)$ элементов группы G из выполнения условий

- (1) $\chi(x_i) \leq \chi(y_i), i = \overline{1,k};$
- (2) типы $t(x_i)$ и $t(x_i)$ несравнимы при $i \neq j$

следует существование эндоморфизма $\theta \in E(G)$ группы G со свойством $\theta(x_i) = y_i, i = \overline{1,k}$.

При k = 1 получаем понятие вполне транзитивной группы.

Кортеж X, удовлетворяющий условию (2) определения 1, назовем t-независимым. Наибольшую длину t-независимого кортежа группы G будем называть t-длиной и обозначать $k_t(G)$. К примеру, t-длина всякой однородной группы равна 1. В случае, если в группе G для любого $k \in \mathbb{N}$ существует t-независимый кортеж длины k, будем считать, что $k_t(G) = \infty$. Ясно, что при $k > k_t(G)$ группа G является k-вполне транзитивной по определению. Тогда очевидно, что всякая однородная группа (в том числе делимая и ранга 1) является k-вполне транзитивной для любого k > 1.

Покажем, что условие (2) определения 1 нельзя заменить условием независимости элементов кортежа X.

Пусть G – группа ранга, не меньшего двух, k > 1; $a, b \in G$, причем $\chi(a) < \chi(b)$ и элементы a, b независимы.

Полагаем $x_1=a+b, x_2=a, y_1=b, y_2=a$. Если r(G)=2, то в группе G нет элементов, независимых с (x_1,x_2) . Если же r(G)>2, то в качестве элементов $x_3,x_4,...,x_k$ выберем элементы, независимые с a, b. Тогда полагаем $y_i=x_i$, $i=\overline{3,k}$. Ясно, что для кортежей $X=(x_1,x_2,...,x_k)$; $Y=(y_1,y_2,...,y_k)$ условие (1)

определения 1 выполнено. Также, по построению, элементы кортежа X независимы. Предположим, существует эндоморфизм $\theta \in E(G)$ группы G, переводящий элементы кортежа X в элементы кортежа Y. Тогда получаем

$$\theta(x_1)=\theta(a+b)=\theta(a)+\theta(b)=y_1=b$$
 и $\theta(x_2)=\theta(a)=y_2=a$.

Учитывая оба равенства, приходим к соотношению $\theta(b) = b - a$.

Рассмотрим характеристики элементов из этого равенства:

$$\chi(\theta(b)) = \chi(b-a) = \inf(\chi(a); \chi(b)) \le \chi(a) < \chi(b) .$$

Приходим к противоречию, так как эндоморфизм не может понижать характеристики. ■

Укажем некоторые свойства t-длин прямых сумм групп без кручения.

Пусть $G = A \oplus B$. Тогда

1. $k_t(G) \ge k_t(A)$.

Действительно, если $X = (x_1, x_2, ..., x_k) - t$ -независимый кортеж элементов группы A, то X также t-независимый кортеж группы G, значит $k_t(G) \ge k$.

2. Если для любых элементов $a \in A, b \in B$ типы t(a) и t(b) несравнимы, то $k_t(G) \ge k_t(A) + k_t(B)$.

Пусть $X=(x_1,x_2,...,x_k)-t$ -независимый кортеж группы $A,\ Y=(y_1,y_2,...,y_l)-t$ -независимый кортеж группы B. Поскольку типы элементов групп A и B несравнимы, кортеж $Z=(x_1,x_2,...,x_k,y_1,y_2,...,y_l)$ также t-независим, т.е. $k_t(G)\geq k+l$.

3. Если для любых элементов $a \in A, b \in B$ типы t(a) и t(b) сравнимы, то $k_t(G) = \max(k_t(A); k_t(B))$.

Для определенности будем считать, что $k_t(B) \ge k_t(A)$. Пусть $Y = (y_1, y_2, ..., y_l)$ — t-независимый кортеж группы B наибольшей длины. Рассмотрим кортеж $\overline{Y} = (y_1, y_2, ..., y_l, a)$, где $a \in A$. Поскольку типы любых элементов групп A и B сравнимы, кортеж \overline{Y} не является t-независимым, т.е. в группе G нет t-независимого кортежа длины, большей чем I.

Приведем оценку верхней границы t-длины вполне разложимой группы конечного ранга. Для этого потребуется следующее понятие.

Семейством Шпернера множества E называется семейство подмножеств F множества E, в котором ни один элемент не является подмножеством другого. Другими словами, если $X,Y \in F$, то $X \not\subset Y$ и $Y \not\subset X$.

Теорема Шпернера [13]. Для любого семейства Шпернера F подмножеств множества мощности n справедливо

$$|F| \le C_n^m$$
, где $m = \left[\frac{n}{2}\right]$.

Рассмотрим теперь данный результат в контексте вопроса о t-длине вполне разложимой группы конечного ранга.

Лемма 1. Пусть $G = \bigoplus_{i=1}^n A_i$ — вполне разложимая группа ранга $n, r(A_i) = 1$. То-

гда
$$k_t(G) \le C_n^{\left[\frac{n}{2}\right]}$$
.

Доказательство. Действительно, пусть для некоторого $k \in N$ имеется кортеж элементов группы G $X = (x_1, x_2,x_k)$. Для t-независимости кортежа X необходимо, чтобы индексное множество $I(x_i)$ не являлось подмножеством множества $I(x_j)$ для всех $j \neq i$. Другими словами, необходимо, чтобы индексные множества $I(x_i)$, $i = \overline{1, k}$, образовывали семейство Шпернера для множества $\{1, 2, ..., n\}$. По теореме Шпернера, наибольшее число таких множеств для вполне разложимой группы G ранга n равно $C_n^{\left\lceil \frac{n}{2} \right\rceil}$. Таким образом, $k_t(G) \leq C_n^{\left\lceil \frac{n}{2} \right\rceil}$. ■

Замечание. Верхняя оценка достигается, например, для групп вида $G = \bigoplus_{i=1}^n A_i$, где $A_i \cong {\bf Q}_{p_i}$.

Поскольку вполне разложимая группа k-вполне транзитивна при $k > k_t(G)$, далее в тексте для вполне разложимых групп ранга n, в силу теоремы Шпернера, полагаем $k \leq C_n^{\left \lfloor \frac{n}{2} \right \rfloor}$.

Рассмотрим вопрос о k-вполне транзитивности вполне разложимых групп из некоторых классов.

Теорема 2. Пусть $G=A_1\oplus A_2$, где $r(A_1)=r(A_2)=1$. Тогда G является k-вполне транзитивной для всех k>1 .

Доказательство. Ясно, что при k>2 в группе G нет t-независимого кортежа длины k. Поэтому при k>2 группа G является k-вполне транзитивной по определению.

Пусть k=2 . В случае если типы $t(A_1)$ и $t(A_2)$ сравнимы, в группе G нет t-независимых кортежей длины 2, тогда G по определению 2-вполне транзитивна.

Пусть $t(A_1)$ и $t(A_2)$ несравнимы. Рассмотрим кортежи $X=(x_1,x_2)$, $Y=(y_1,y_2)$ элементов группы G, удовлетворяющие условиям (1), (2) определения 1. В силу того, что кортеж X t-независим, заключаем, что x_1 и x_2 принадлежат различным прямым слагаемым A_i , i=1,2, ранга 1. Не умаляя общности, можно считать, что $x_1\in A_1$, $x_2\in A_2$. Тогда для любых $a_1\in A_1$, $a_2\in A_2$ справедливо $\chi(a_1+a_2)\leq \chi(x_1)$ и $\chi(a_1+a_2)\leq \chi(x_2)$. Поэтому из выполнения условия (1) определения 1 для кортежей X, Y и из несравнимости типов $t(A_1)$ и $t(A_2)$ заключаем, что $y_1\in A_1$, $y_2\in A_2$.

Поскольку всякая группа ранга 1 является вполне транзитивной, существуют эндоморфизмы $\theta_1 \in E(A_1)$, $\theta_2 \in E(A_2)$ со свойствами $\theta_i(x_i) = y_i$ (i=1,2). Рассмотрим эндоморфизм θ группы G, действующий по правилу: для любого $g \in G$, $g = a_1 + a_2$, $a_1 \in A_1$, $a_2 \in A_2$ полагаем $\theta(g) = \theta_1(a_1) + \theta_2(a_2)$. Тогда получаем: $\theta(x_i) = \theta_i(x_i) = y_i$, i=1,2. Таким образом, искомый эндоморфизм найден. \blacksquare

Для произвольной вполне разложимой группы ранга 3 уже нет однозначного ответа о *k*-вполне транзитивности. Приведем примеры.

1. Рассмотрим группу $G=A_1\oplus A_2\oplus A_3$, где $r(A_1)=r(A_2)=r(A_3)=1$ и $t(A_1)=(0,\infty,\infty,...,\infty,...);$ $t(A_2)=(\infty,0,\infty,...,\infty,...);$ $t(A_3)=(\infty,\infty,0,...,\infty,...)$. Покажем, что G не является 3-вполне транзитивной. Пусть элементы $a\in A_1,b\in A_2,c\in A_3$ имеют наименьшие характеристики в соответствующих группах. Рассмотрим кортежи $X=(x_1,x_2,x_3),Y=(y_1,y_2,y_3)$, элементов группы G, где $x_1=a+b,x_2=b+c,x_3=a+c$, $y_1=x_1,y_2=b+x_2,y_3=x_3$. Запишем характеристики элементов кортежа X:

$$\chi(x_1) = \chi(a+b) = (0,0,\infty,\infty,\infty,...);$$

$$\chi(x_2) = \chi(b+c) = (\infty,0,0,\infty,\infty,...);$$

$$\chi(x_3) = \chi(a+c) = (0,\infty,0,\infty,\infty,...).$$

Видим, что кортеж X удовлетворяет условию (2) определения 1. Кортежи X, Y по построению удовлетворяют условию (1).

Предположим, группа G 3-вполне транзитивна. Тогда существует $\theta \in E(G)$, что $\theta(x_i) = y_i$, $i = \overline{1,3}$. Поскольку прямые слагаемые $\{A_1; A_2; A_3\}$ образуют жесткую систему, получаем, что $\theta(a) \in A_1$, $\theta(b) \in A_2$, $\theta(c) \in A_3$. Но тогда $\theta(x_1) = \theta(a+b) = \theta(a) + \theta(b) = y_1 = a+b$, откуда $\theta(b) = b$ и $\theta(x_2) = \theta(b+c) = \theta(b) + \theta(c) = y_2 = 2b+c$, откуда $\theta(b) = 2b$. Приходим к противоречию.

2. Рассмотрим теперь группу $G=B_1\oplus B_2\oplus B_3$, где $r(B_1)=r(B_2)=r(B_3)=1$ и $t(B_1)=(\infty,0,0,...,0,...);\ t(B_2)=(0,\infty,0,...,0,...);\ t(B_3)=(0,0,\infty,0,...,0,...)$. Заметим, что для любых ненулевых элементов $a\in B_1,\ b\in B_2,\ c\in B_3$ имеет место равенство t(a+b)=t(a+c)=t(b+c)=(0,0,...,0,...). Таким образом, если кортеж $X=(x_1,x_2,x_3)$ является t-независимым, то, не умаляя общности, можем считать, что $x_1\in B_1,\ x_2\in B_2,\ x_3\in B_3$.

Пусть кортежи $X=(x_1,x_2,x_3), Y=(y_1,y_2,y_3)$ элементов группы G удовлетворяют условиям определения 1. В силу приведенных рассуждений, заключаем, что $x_1 \in B_1, x_2 \in B_2, x_3 \in B_3$. Тогда из выполнения условия (1) определения 1 следует, что $y_1 \in B_1, y_2 \in B_2, y_3 \in B_3$.

Таким образом, получаем, что $\chi(x_i) \leq \chi(y_i), i = \overline{1,3}; x_1, y_1 \in B_1, x_2, y_2 \in B_2, x_3, y_3 \in B_3$. Из вполне транзитивности групп $B_1; B_2; B_3$ следует существование эндоморфизмов $\theta_1 \in E(B_1); \theta_2 \in E(B_2); \theta_3 \in E(B_3)$, со свойствами: $\theta_i(x_i) = y_i, i = \overline{1,3}$.

Рассмотрим эндоморфизм $\theta \in E(G)$ группы G, действующий по правилу: для любого элемента $g=a_1+a_2+a_3,\ a_1\in B_1,\ a_2\in B_2,\ a_3\in B_3,\$ имеем $\theta(g)=\theta_1(a_1)+\theta_2(a_2)+\theta_3(a_3)$.

Тогда для элементов кортежей X, Y получаем $\theta(x_i) = \theta_i(x_i) = y_i$, $i = \overline{1,3}$. Искомый эндоморфизм найден, следовательно, группа G - 3-вполне транзитивна.

Приведем критерий вполне транзитивности для однородно разложимых (в частности, вполне разложимых) групп. Для этого понадобится следующее определение:

Определение 2 [4]. Будем говорить, что однородно разложимая группа $G = \bigoplus_{t \in T} G_t$ удовлетворяет условию контрастности для типов, если для всяких двух типов $t_1, t_2 \in T, t_1 \neq t_2$ и любого простого числа p, такого, что $pG_{t_1} \neq G_{t_1}$, имеет место $pG_{t_2} = G_{t_2}$.

Предложение 3 [15]. Однородно разложимая редуцированная абелева группа $G = \bigoplus_{t \in T} G_t$ вполне транзитивна тогда и только тогда, когда каждая однородная компонента ее канонического разложения вполне транзитивна и G удовлетворяет условию контрастности для типов.

Следствие 4 [15]. Вполне разложимая группа $G = \bigoplus_{i \in I} A_i$ вполне транзитивна тогда и только тогда, когда она удовлетворяет условию контрастности для типов.

Далее, нам понадобятся следующие обозначения. Для произвольной группы без кручения G обозначим $\pi(G) = \{p \in \Pi; pG \neq G\}$.

Пусть $G = \bigoplus_{i \in I} A_i$ — прямая сумма групп без кручения A_i , $\pi_i \in E(G)$ — проекция группы G на прямое слагаемое A_i , $i \in I$. Для любого элемента $g \in G$ введем следующее множество индексов: $I(g) = \{i \in I : \pi_i(g) \neq 0\}$.

Пусть $G=\bigoplus_{i\in I}A_i$ — однородно разложимая группа. Для всякого $J\subset I$ обозначим $t_J=\inf_{i\in I}t(A_i)$. В частности, если $J=\{i\},\,i\in I,$ то $t_J=t_i=t(A_i)$.

Рассмотрим вопрос о k-вполне транзитивности вполне разложимых групп, имеющих следующую структуру. Пусть $G=\bigoplus_{i\in I}A_i$ — вполне разложимая группа, $r(A_i)=1$, причем типы $t(A_i)$ и $t(A_j)$ несравнимы при $i\neq j$. Другими словами, множество прямых слагаемых ранга 1 $\{A_i\}_{i\in I}$ образует жесткую систему групп.

Для вполне разложимых групп с указанной структурой справедливы следующие результаты.

Теорема 5. Пусть $G=\bigoplus_{i\in I}A_i$ — вполне разложимая группа, $r(A_i)=1$, множество $\{A_i\}_{i\in I}$ образует жесткую систему. Если группа G является k-вполне транзитивной для некоторого $k\in N$, то для любых конечных подмножеств $J_1,J_2,...J_k\subset I$, таких, что тип t_{J_n} несравним с типом t_{J_m} , выполнено $J_n\cap J_m=\varnothing$ при $m\neq n$.

Доказательство. Пусть подмножества $J_1,J_2,...J_k\subset I$ конечны и таковы, что тип t_{J_n} несравним с типом t_{J_m} при $m\neq n$. Для всех $i=\overline{1,k}$ обозначим $G_i=\bigoplus_{j\in J_i}A_j$ и $x_i\in G_i$, такой, что $I(x_i)=J_i$. Предположим, для некоторых $m,n=\overline{1,k}$ $J_m\cap J_n\neq \emptyset$. Тогда найдется $r\in J_m\cap J_n$. В силу выбора элементов x_i получаем, что $x_m=a_r+\overline{a}; x_n=b_r+\overline{b}$, где $a_r,b_r\in A_r$ и $r\notin I(\overline{a}); r\notin I(\overline{b})$. Тогда существуют $u,v\in \pmb{Z}$, такие, что

$$ua_r = vb_r. (*)$$

Рассмотрим кортеж $X=(x_1,x_2,...,x_k)$ элементов группы G. Из условий теоремы следует, что X t-независим. Выберем элементы кортежа $Y=(y_1,y_2,...,y_k)$ следующим образом: при $i\neq m, i\neq n$ полагаем $y_i=x_i, y_m=a_r, y_n=2b_r$. Ясно, что кортежи X и Y удовлетворяют условиям определения 1. Тогда, в силу k-вполне транзитивности группы G, существует эндоморфизм $\theta\in E(G)$, такой, что $\theta(x_i)=y_i, i=\overline{1,k}$. Рассмотрим данные равенства подробнее при i=m, i=n:

$$\begin{aligned} &\theta(x_m) = \theta(a_r + \overline{a}) = \theta(a_r) + \theta(\overline{a}) = y_m = a_r, \\ &\theta(x_n) = \theta(b_r + \overline{b}) = \theta(b_r) + \theta(\overline{b}) = y_n = 2b_r. \end{aligned}$$

Поскольку семейство прямых слагаемых $\{A_i\}_{i\in I}$ образует жесткую систему, заключаем, что

$$\theta(a_r) = a_r$$
 и $\theta(b_r) = 2b_r$. (**)

Из равенств (*) и (**) получаем

$$ua_r = u\theta(a_r) = \theta(ua_r) = \theta(vb_r) = v\theta(b_r) = 2vb_r$$
.

Приходим к противоречию, то есть $J_n \cap J_m = \emptyset$ при $m \neq n$. \blacksquare

Следствие 6. Пусть $G = \bigoplus_{i \in I} A_i$ — вполне разложимая группа, $r(A_i) = 1$, множество $\{A_i\}_{i \in I}$ образует жесткую систему. Если группа G 2-вполне транзитивна, то для любых различных индексов $m, n, k \in I$ тип $t(A_m) \cap t(A_n)$ сравним с типом $t(A_m) \cap t(A_k)$.

Доказательство. Предположим противное, то есть для некоторых $m,n,k\in I$ типы $t(A_m)\cap t(A_n)$ и $t(A_m)\cap t(A_k)$ несравнимы. Тогда типы элементов a_m+a_n и a_m+a_k , где $a_i\in A_i$, $a_j\in A_j$, $a_l\in A_l$, также несравнимы. Причем $I(a_m+a_n)\cap I(a_m+a_k)=m$, что противоречит утверждению теоремы 5. \blacksquare

Предложение 7. Если вполне разложимая группа $G = \bigoplus_{i \in I} A_i$, где $r(A_i) = 1$, множество $\{A_i\}_{i \in I}$ образует жесткую систему, вполне транзитивна, то для любых элементов $a,b \in G$, из $\chi(a) \leq \chi(b)$ следует $I(b) \subset I(a)$.

Доказательство. Пусть $a,b \in G$ и $\chi(a) \le \chi(b)$. Из вполне транзитивности группы G следует существование $\theta \in E(G)$, такого, что $\theta(a) = b$.

Получаем
$$b=\theta(a)=\theta(\sum_{i\in I(a)}a_i)=\sum_{i\in I(a)}\theta_i(a_i)\in \underset{i\in I(a)}{\oplus}A_i$$
, то есть $I(b)\subset I(a)$. \blacksquare

Учитывая приведенные выше результаты, получаем следующие факты.

Теорема 8. Пусть $G = \bigoplus_{i \in I} A_i$ – вполне разложимая группа, $r(A_i) = 1$, множество

 $\{A_i\}_{i\in I}$ образует жесткую систему. Группа G k-вполне транзитивна для всех $k\in N$ тогда и только тогда, когда выполнены условия

- (A) группа G удовлетворяет условию контрастности для типов;
- (Б) для любых двух элементов $a,b\in G$ с несравнимыми типами выполнено $I(a)\cap I(b)=\varnothing$.

Доказательство. Необходимость. Пусть G является k-вполне транзитивной для всех $k \in \mathbb{N}$. Тогда, так как G является вполне транзитивной, в силу утверждения предложения 3 G удовлетворяет условию контрастности для типов, и, так как G является 2-вполне транзитивной, из теоремы 5 при k=2 следует выполнение условия (Б).

Достаточность. Пусть для группы G выполнено (A) и (Б). Из предложения 3 следует, что G является вполне транзитивной. Докажем, что G k-вполне транзитивна для всех $k \ge 2$.

Пусть $X = (x_1, x_2, ..., x_k), Y = (y_1, y_2, ..., y_k)$ — кортежи элементов группы G, удовлетворяющие условиям определения 1. Из условия (1) определения 1 и условия (Б) теоремы следует, что при $i \neq j \ I(x_i) \cap I(x_j) = \emptyset$. Обозначим через

$$I_i=I(x_i),\,G_i=\mathop{\oplus}\limits_{j\in I(x_i)}A_j$$
 , $\overline{I}=I\setminus(\bigcup_{i=1}^kI_i)$, $\overline{G}=\mathop{\oplus}\limits_{i\in \overline{I}}A_i$. Тогда $G=\mathop{\oplus}\limits_{i=1}^kG_i\oplus\overline{G}$.

Из вполне транзитивности группы G следует, что всякая G_i также вполне транзитивна и, из условия (2) определения 1 и по предложению 7, что $I(y_i) \subset I(x_i)$, то есть $y_i \in G_i$. Тогда существуют $\theta_i \in E(G_i)$ со свойством

$$\theta_i(x_i) = y_i, i = \overline{1,k}$$
 . Рассмотрим эндоморфизм $\theta = \sum_{i=1}^k \theta_i \pi_i \in E(G)$, где $\pi_i \in E(G)$ —

проекция группы G на прямое слагаемое G_i , $i=\overline{1,k}$. Тогда по построению имеем $\theta(x_i)=\theta_i(x_i)=y_i$.

Теорема 9. Пусть $G=\bigoplus_{i\in I}A_i$ — вполне разложимая группа, $r(A_i)=1$, множество $\{A_i\}_{i\in I}$ образует жесткую систему и $k\in N$. Группа G k-вполне транзитивна тогда и только тогда, когда для любых конечных множеств $J_1,J_2,...,J_k\subset I$, таких, что типы t_{J_m} и t_{J_n} несравнимы при $m\neq n$, выполнены условия

- (I) $J_n \cap J_m = \emptyset$ при $m \neq n$;
- (II) Группы $G_m = \bigoplus_{i \in J_m} A_i$ удовлетворяют условию контрастности для типов $(m = \overline{1,k})$;
- (III) Если для конечного множества индексов $J\subset I$ и натурального $m=\overline{1,k}$ справедливо $t_J\geq t_{J_m}$ то $J\subset J_m$.

Доказательство. *Необходимость*. Выполнение условия (I) следует из теоремы 5.

Докажем, что группы $G_m = \bigoplus_{i \in J_m} A_i$ вполне транзитивны. Пусть $a,b \in G_m$ и $\chi(a) \leq \chi(b)$. Построим кортежи $X = (x_1, x_2, ..., x_k), Y = (y_1, y_2, ..., y_k)$ следующим образом. При $i \neq m$ выберем $x_i \in G_i$ так, чтобы $I(x_i) = J_i$; $y_i = x_i, x_m = a, y_m = b$. Поскольку группа G является k-вполне транзитивной, существует $\theta \in E(G)$, что $\theta(x_i) = y_i$. Рассмотрим сужение $\theta_m = \theta \Big|_{G_m}$. Так как $\{A_i\}_{i \in I}$ образует жесткую систему, $\theta_m \in E(G_m)$. Получаем, что $\theta_m(a) = b$, то есть G_m вполне транзитивна.

Покажем, что условие (III) также выполнено. Пусть для некоторых $J \subset I$ и $m=\overline{1,k}$ справедливо $t_J \geq t_{J_m}$. Тогда существуют элементы $x \in G_m, y \in \bigoplus_{i \in J} A_i, I(x) = J_m; I(y) = J$, для которых выполнено $\chi(x) \leq \chi(y)$. Построим кортежи $X = (x_1, x_2, ..., x_k), Y = (y_1, y_2, ..., y_k)$. При $i \neq m$ выберем $x_i \in G_i$ так, чтобы $I(x_i) = J_i, y_i = x_i, x_m = x, y_m = y$. Ясно, что X и Y удовлетворяют условиям определения 1. Тогда, из k-вполне транзитивности группы G следует существование эндоморфизма $\theta \in E(G)$ со свойством $\theta(x_i) = y_i$. Но тогда $y = \theta(x) \in G_m$, то есть $J = I(y) \subset I(x) = J_m$.

Достаточность. Пусть условия (I), (II) и (III) выполнены. Покажем, что G является k-вполне транзитивной. Рассмотрим кортежи $X=(x_1,x_2,...,x_k)$, $Y=(y_1,y_2,...,y_k)$ элементов группы G, удовлетворяющие условиям определения 1. Для всякого $m=\overline{1,k}$ обозначим $J_m=I(x_m), \ \overline{J_m}=I(y_m), \ G_m=\bigoplus_{i\in J_m}A_i$, $\overline{G_m}=\bigoplus_{i\in J_m}A_i$. Из условия (II) следует, что группы G_m вполне транзитивны. Значит, существуют $\theta_m\in E(G_m)$, такие, что $\theta_m(x_m)=y_m, \ m=\overline{1,k}$. Рассмотрим эндоморфизм $\theta=\sum_{m=1}^k\theta_m\pi_m$ группы G, где $\pi_m\in E(G)$ — проекция группы G на прямое слагаемое G_m . Тогда получаем

$$\theta(x_i) = \sum_{m=1}^k \theta_m \pi_m(x_i) = \theta_i(x_i) = y_i,$$

значит искомый эндоморфизм найден. ■

ЛИТЕРАТУРА

- 1. Kaplansky I. Infinite Abelian Groups. Ann Arbor: Univ. of Michigan Press, 1954.
- Крылов П.А. О вполне характеристических подгруппах абелевых групп без кручения // Сборник асп. работ по матем. Томск, 1973. С. 15–20.
- 3. *Гриншпон С.Я.*, *Мисяков В.М.* О вполне транзитивных абелевых группах // Абелевы группы и модули. Томск, 1986. С. 12–27.
- 4. *Гриншпон С.Я.* Вполне характеристические подгруппы абелевых групп и вполне транзитивность // Фундамент. и прикл. матем. 2002. Т. 8. №2. С. 407–473.
- Гриншпон С.Я. О строении вполне характеристических подгрупп абелевых групп без кручения // Абелевы группы и модули. Томск. 1982. С. 56–92.
- Крылов П.А. Вполне транзитивные абелевы группы без кручения // Алгебра и логика. 1990. Т. 29. № 5. С. 549–560.
- Чехлов А.Р. О разложимых вполне транзитивных группах без кручения // Сиб. матем. журн. 2001. Т. 42. № 3. С. 714–719.
- Чехлов А.Р. Об одном классе эндотранзитивных групп // Матем. заметки. 2001. Т. 69.
 № 6. С. 944–949.
- Grinshpon S.Ya., Krylov P.A. Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups // J. Math. Sci. 2005. V. 128. No. 3. P. 2894–2997.
- 10. Carroll D. Multiple transitivity in abelian groups // Arch. Math. 1994. V. 63. P. 9–16.
- 11. Φ укс Л. Бесконечные абелевы группы. М.: Мир, 1977. Т. 2.

- Рогозинский М.И. k-вполне транзитивность абелевых групп без кручения // Наука и образование: 13 Всерос. конф. студентов, аспирантов и молодых ученых. Томск, 2009. С. 14–17.
- 13. Engel K. Sperner theory. Camb. Univ. Press, 1997.
- 14. *Рогозинский М.И. к*-вполне транзитивные абелевы группы без кручения // Современные проблемы математики и механики: Материалы II Всерос. мол. науч. конф. Томск, 2011. С. 41–44.
- 15. *Гриншпон С.Я*. О строении вполне характеристических подгрупп абелевых групп без кручения // Абелевы группы и модули. Томск, 1982. С. 56–92.

Статья поступила 02.07.2012г.

Rogozinsky M. I. ON k-FULL TRANSITIVITY OF COMPLETELY DECOMPOSABLE TOR-SION FREE ABELIAN GROUPS. In this work, we define the notion of k-fully transitive torsion free abelian groups. The problem of multiple transitivity of completely decomposable torsion free abelian groups from some classes is studied.

Keywords: abelian group, k-full transitivity

ROGOZINSKY Mikhail Ivanovich (Tomsk State University)

E-mail: Rogozinsky_mikhail@mail.ru