Г.Г. ПЕСТОВ, С.Р. ХУСАИНОВА

К ТЕОРЕМЕ НАПРАВЛЕННОСТИ

Установлены точные условия, при которых в модели нестандартного анализа Робинсона-Закона выполнен принцип направленности для всех направленных отношений, определенных на данном множестве, а также выяснены условия выполнения принципа направленности для всех направленных отношений в данной суперструктуре.

1. Фильтры и направленные отношения

В этой статье мы придерживаемся теоретико-множественной модели Робинсона-Закона [1]. Несмотря на разработку различных версий нестандартного анализа [2, 3], эта модель остается удобным орудием исследования в различных областях математики [4].

В модели Робинсона-Закона принцип направленности играет существенную роль, аналогичную роли аксиомы идеализации в теории внутренних множеств Нельсона [5]. Нашей целью является формулировка и доказательство необходимых и достаточных условий выполнения принципа направленности (в слабой форме) в модели Робинсона-Закона для всех направленных отношений, определенных на заданном множестве, а также необходимых и достаточных условий выполнения принципа направленности для всех направленных отношений в данной суперструктуре. Подробное обсуждение принципа направленности, как и других принципов нестандартного анализа содержится в [2]. Мы лишь бегло перечислим используемые нами обозначения, относящиеся к рассматриваемой модели.

Пусть S есть бесконечное множество. Положим:

$$V_0(S)=S,...,V_{n+1}(S)=V_n(s) \cup P(V_n(S)),$$

 $V(S)=\bigcup_{n=1}^{\infty} V_n(S).$

Будем называть $V_n(S)$ n-м этажем суперструктуры V(S). Пусть F есть свободный ультрафильтр (будем называть его базисным фильтром). Для каждого n натурального через $*V_n(S)$ обозначим ультрастепень множества $V_n(S)$ по F. Наконец, обозначим:

$$*V(S)=\bigcup_{n=0}^{\infty}*V_{n}(S).$$

Множество $*V_n(S)$ назовем n-м этажом универсума *V(S).

Пусть $A \in V(s)$, r(x, y) есть A-направленное бинарное отношение на $A \times A$. Тогда r следующим образом порождает фильтр на A. Для каждого $x \in A$ определим множество $A_x = \{y \in A \mid r(x, y)\}$. Нетрудно видеть, что это семейство центрированно, и, следовательно, порождает некоторый фильтр над A. Обозначим этот фильтр через F_y . Фильтр F над множеством T называется α -регулярным, если существует такое подмножество $E \subset F$, что каждое $t \in T$ принадлежит лишь конечному числу множеств $e \in E$, и мощность E равна α [6].

Теорема 1.1. Пусть A — множество мощности α . Тогда на $A \times A$ существует A-направленное отношение r_0 , такое что порожденный этим отношением фильтр α -регулярен.

Доказательство. Обозначим через B множество всех конечных подмножеств множества A. Пусть $\tau \in B$. Положим: $B_{\tau} = \{t \mid \tau \subset t\}$. Множество $E = \{B_{\tau} \mid \tau \in B\}$ центрировано, поэтому оно порождает некоторый фильтр $S_{\infty}(B)$. С другой

стороны, для каждого $\theta \in B$ имеем $\theta \in B_{\tau}$ если, и только если $\tau \subset \theta$. Следовательно, $\theta \in B_{\tau}$ лишь для конечного числа множеств B_{τ} . Наконец, мощность E равна α , поэтому фильтр $S_{m}(B)$ α -регулярен.

Зададим на A бинарное отношение r_0 .

Множество B равномощно A. Рассмотрим биекцию $\phi: B \to A$. Для $x, y \in A$ положим:

$$r_0(x, y)=1 \Leftrightarrow \varphi(x) \subset \varphi(y)$$
.

Нетрудно видеть, что отношение r_0 центрировано. Фильтр F_{r_0} , индуцированный этим отношением, является образом фильтра $S_{\omega}(B)$, следовательно, α -регулярен.

Введем в классе фильтров отношение порядка по Рудину-Кейслеру. Пусть фильтры F и Φ заданы на A и B соответственно. Говорят, что F тоньше Φ , $F \prec \Phi$, если существует такое отображение $\Psi: A \to B$, что для каждого $E \in \Phi$ имеем $\Psi^{-1}(E) \in F$.

Определение 1.1. Пусть A, $B \in V(S)$, r есть бинарное B-направленное отношение на $A \times B$. Будем говорить, что принцип направленности выполнен для отношения r, если существует такое $y_0 \in {}^*B$, что для всех $x \in A$ имеем: ${}^*r({}^*x, y_0)=1$.

Замечание. Каждому отношению r, определенному на $A \times B$, сопоставим отношение ρ , определенное на $C \times C$, где $C = A \cup B$. Положим

$$r(x,y) = \begin{cases} \rho(x,y) & (x \in A, y \in B), \\ 0 & (x \notin A \lor y \notin B). \end{cases}$$

Легко видеть, что B-направленности отношения r эквивалентна C-направленность отношения ρ . В то же время, принцип направленности выполнен для ρ тогда и только тогда, когда он выполнен для r. В дальнейшем мы рассматриваем только направленные отношения, заданные на декартовом квадрате. A-направленное отношение, заданное на $A \times A$, будем называть просто направленным.

Теорема 1.2. Пусть F есть свободный ультрафильтр над множеством T,*V(S) есть ограниченная ультрастепень суперструктуры V(S) по ультрафильтру F, r есть направленное бинарное отношение на множестве A×A. Тогда для выполнения принципа направленности для r необходимо и достаточно, чтобы F>F $_r$

Доказательство.

а) Достаточность. Пусть $F \succ F_r$. Это означает, что существует сюрьекция $\phi: T \rightarrow A$ такая, что

$$\forall B \in FR(\phi - 1(B) \in F).$$
 (1)

Обозначим класс эквивалентности по фильтру F, содержащий φ , через $\overline{\varphi}$. По определению внутреннего универсума *V(S), имеем $\overline{\varphi} \in *V(S)$. Покажем, что для всех $x \in A$ имеет место $*r(x^*, \overline{\varphi}) = 1$.

Действительно,

*
$$r(x^*, \overline{\varphi}) = 1 \Leftrightarrow \{t \in T \mid r(x, \varphi(t)) = 1\} \in F$$
. (2)

По определению A_x , $r(x, \varphi(t))=1 \Leftrightarrow \varphi(t) \in A_x$. Поэтому

$$*r(*x,\overline{\varphi}) = 1 \Leftrightarrow \{ t \in T | \varphi(t) \in A_x \} \in F \Leftrightarrow \\ \Leftrightarrow \varphi^{-1}(A_x) \in F.$$
 (3)

Так как по построению F_y , $A_x \in F_y$, то, в силу (1) $\varphi^{-1}(A_x \in F)$. Поэтому из (2) и (3) следует: $*r(x^*, \overline{\varphi}) = 1$.

6) Необходимость. Пусть принцип направленности для r имеет место, т.е. существует $y_0 \in {}^*A$ такое, что $r({}^*x, y_0)=1$ для всех $x \in A$. Выберем в классе эквивалентности y_0 некоторую функцию $\phi:T \rightarrow A$.

Пусть $x \in A$. Имеем: $\{t \in T \mid r(x, \varphi(t))=1\} \in F$. Далее:

 $\varphi^{-1}(A_x) = \{t \in T \mid \varphi(t) \in A_x\} = \{t \in T \mid r(x, \varphi(t)) = 1\} \in F.$

Итак, для всех $x \in A$ имеем $\varphi^{-1}(A_x) \in F$. Т.к. фильтр F_y порожден семейством $\{A_x \mid x \in A\}$, то и для каждого $A \in F_y$ имеем: $\varphi^{-1}(A) \in F$, а это и означает, что $F \succ F_y$.

2. Выполнение

принципа направленности для отношений, определенных на данном множестве

Теорема 2.1. Пусть $A \in V(S)$, $\operatorname{card}(A) = \alpha$. Тогда для того чтобы для каждого направленного отношения, определенного на A, выполнялся принцип направленности, необходимо и достаточно, чтобы основной ультрафильтр F был α -регулярен.

Доказательство.

а) Необходимость. Пусть принцип направленности выполняется для всех направленных отношений, определенных на $A \times A$.

Пусть θ есть множество всех конечных подмножеств множества A. Так как мощность θ равна мощности A, то существует биекция $\phi:A \to \theta$.

Зададим на $A \times A$ бинарное отношение $r_0(x, y) = -(\phi(x) \subset \phi(y))$. Это отношение – направленное.

В самом деле, пусть
$$x_1, ..., x_k \in A$$
. Множество $B = \bigcup_{i=1}^k \varphi(x_i)$

есть конечное подмножество множества A, следовательно, $B \in \Theta$. Положим $y_1 = \varphi^{-1}(B)$. Теперь $r_0(x_i, y_1) = 1$ для всех i, $1 \le i \le k$.

По теореме 1.1 существует такое бинарное отношение r_0 , определенное на $A \times A$, что фильтр F_{r_0} α -регулярен. В силу теоремы 1.2 принцип направленности для r_0 выполнен тогда и только тогда, когда $F \succ F_{r_0}$. Поскольку F_{r_0} α -регулярен, то и F α -регулярен.

6) Достаточность. Пусть F α -регулярен, r — направленное отношение, заданное на A, $\operatorname{card} dA = \alpha$. Покажем, что принцип направленности для r выполнен.

Так как фильтр F α -регулярен, то найдется такое $E \subset F$, $\operatorname{card} E = \alpha$, и каждое i из E принадлежит лишь конечному числу множеств из E. Множества E и A равномощны, поэтому существует биекция $\varphi: E \to A$. Зададим на индексном множестве I функцию y_0 следующим образом. Пусть $i \in I$. По построению E существует лишь конечное множество таких e_1, \ldots, e_k из E, которые содержат i. Обозначим: $x_i = \varphi(e_i)$, $1 \le j \le k$.

В силу направленности r, существует непустое множество A_i , такое что из $y \in A_i$ следует: $r(x_i, y) = 1$ для $1 \le j \le k$. Таким образом, имеется множество непустых мно-

жеств $\{A_i\}_{i \in I}$. По аксиоме выбора, выберем в каждом из этих множеств Ai элемент y_i .

Положим: $y_0(i)=y_i$. Обозначим через \bar{y}_0 тот класс эквивалентности по фильтру F, который содержит y_0 .

Пусть $x_0 \in A$. Имеем:

$$(R(*X_0, Y_0)=1) \Leftrightarrow \{I \in I \mid R(*X_0(I), Y_0(I))=1\} \in F.$$

$$(4)$$

С другой стороны,

$$\{i \in I \mid r(*x_0(i), y_0(i)) = 1\} =$$

$$= \{I \in I \mid R(X_0, Y_I) = 1\} \supset \varphi^{-1}(X_0).$$
(5)

Но $\varphi^{-1}(x_0) \in E$, значит, $\varphi^{-1}(x_0) \in F$. Поэтому, в силу (4), (5), *r(* x_0 , \bar{y}_0)=1, что и требовалось.

3. Достаточное условие регулярности фильтра

Теорема 3.1. Пусть $\{\alpha_t | t \in T\}$ есть множество кардиналов, такое что:

- 1) в этом множестве нет наибольшего кардинала;
- 2) cardT< α , где α =sup α ,;
- 3) фильтр F при всех $t \in T$ α_t -регулярен.

Тогда фильтр F α -регулярен.

Доказательство. В условиях теоремы найдется такое $\tau \in T$, что card $T \le \alpha_{\tau}$. Так как $F \alpha_{\tau}$ -регулярен, то он и card T-регулярен. Обозначим множество, на котором задан фильтр F, через I.

Существует такое множество $H \subset F$, $H\{h_t | t \in T\}$, что каждое $i \in I$ принадлежит лишь конечному числу множеств из H.

Точно так же, для каждого $t \in T$ существует такое множество $E_i \subset F$, что $\operatorname{card} E_i = \alpha_i$ и каждое $i \in I$ принадлежит лишь конечному числу множеств из E_i . Рассмотрим множество $E = \{e \cap h \mid \exists t \in T (e \in E_i, h = h_i)\}$.

Имеем: $cardE=\alpha$ и $E\subset F$, поскольку каждое множество из E есть пересечение двух множеств из F.

Пусть $i \in I$. По определению H существует конечное число множеств h_{i_1} , ..., h_{i_j} , ..., h_{i_k} , которым принадлежит i. В свою очередь, при каждом t_j в E_{t_j} существует лишь конечное число множеств $e_{j,1}$, ..., e_{j,l_j} , содержащих i. Поэтому i принадлежит лишь множествам $h_{t_j} \cap e_{j,s}$, где $1 \le j \le k$, и при каждом j выполнено неравенство $1 \le s \le l_j$.

Итак, i принадлежит конечному числу множеств из E, следовательно, фильтр F α -регулярен.

4. Условие выполнимости принципа направленности

Теорема 4.1. Пусть *V(S) есть ограниченная ультрастепень суперструктуры S по ультрафильтру F и $\operatorname{card} V(S) = \alpha$. Тогда принцип направленности выполнен в *V(S) для всех направленных отношений из V(S), если и только если ультрафильтр F α -регулярен.

Доказательство. а) Необходимость. Пусть принцип направленности выполнен для каждого направленного отношения из V(S). Обозначим α_n =card $V_n(S)$, где $V_n(S)$ есть n-й этаж суперструктуры V(S), α =sup α_n . По теореме 1.1 суще-

ствует такое направленное отношение r_n на $V_n(S)$, что ин-

дущированный им фильтр F_{r_n} является α_n -регулярным. Так как принцип направленности выполнен для каждого направленного отношения на $V_n(S)$, то, по теореме 1.2 $F \succ F_{r_0}$ F α_n -регулярен для всех $n \in \mathbb{N}$. α =cardV(S)= = sup α_n и по теореме 3.1 F является α -регулярным.

6) Достаточность. Пусть ультрафильтр F α -регулярен, $A \in V(S)$, r — бинарное направленное отношение на $A \times A$. Из α -регулярности F следует, что F является и cardA-регулярным. По теореме 2.1 заключаем, что для отношения r выполнен принцип направленности.

ЛИТЕРАТУРА

- 1. Robinson A. and Zakon E. A set-theoretical characterization of enlargements, in 'Applications of Model Theory to Algebra, Analysis and Probability / W. A. J. Luxemburg (ed.), Holt, Rinehart and Winstone (New York, 1969), P. 109-122.
- 2. Кусраев А.Г., Кутателадзе С.С. Нестандартные методы анализа. Новосибирск, Наука, 1990.
- 3. Mattes J. Axiomatic approaches to nonstandard analysis. Jahrbuch der Kurt Gudel Geselschaft 1992, 61-79.
- 4. Альбеверио С., Фенстад Й, Хеэг-Крон, Линдстрем Т. Нестандартные методы в стохастическом анализе и математической физике. М.: Мир, 1990.
- 5. Nelson E. Internal set theory. A new approach to nonstandard analysis Bull. Amer. Math. Soc. 1977. V. 83, No. 6, P. 1165-1198.
- 6. Chang C.C. and Keisler H.G. Model theory, 3rd edn. North-Holland, Amsterdam, 1990.

Статья представлена кафедрой математического анализа механико-математического факультета Томского государственного университета, поступила в научную редакцию «Математика» 10 декабря 1999 г.