<u>№</u> 339 Октябрь 2010

БИОЛОГИЯ

УДК 577.4

А.Д. Самбуу

ИЗМЕНЕНИЕ ЧИСТОЙ ПЕРВИЧНОЙ ПРОДУКЦИИ ЭКОСИСТЕМ ТУВЫ В СВЯЗИ С РАЗЛИЧНЫМ ИСПОЛЬЗОВАНИЕМ ЗЕМЕЛЬ

Продуктивность экосистемы характеризуется двумя параметрами — запасом живой фитомассы и чистой первичной продукцией, т.е. количеством органического вещества, создаваемого зелеными растениями за единицу времени на единице площади. Продуктивность экосистем определяется количеством поступающей солнечной энергии и влаги. Использование земель человеком приводит к изменению величины чистой первичной продукции, уменьшению поступления растительных остатков в почву. Анализ геоботанических карт и исследования оценки первичной продукции естественных и антропогенно измененных экосистем позволили оценить произошедшие изменения чистой первичной продукции и поступления растительных остатков в почву за последние примерно 100 лет. Несмотря на малонаселенность республики, где плотность населения составляет 1,8 чел. на 1 км², 45% территории уже преобразовано человеком. Наибольшие изменения произошли в лесостепной и степной зонах, где использование земель достигает 80%. Чистая первичная продукция республики в прошлом составляла 863 к 106 г/год, в настоящее время она снизилась до 621,2х106 г/год, понизилось и поступление растительных остатков в почву до 318х106 г/год, понизилось и поступление растительных остатков в почву до 318х106 г/год.

Ключевые слова: чистая первичная продукция; ландшафты; растительные остатки; трансформация экосистем; агроценозы.

Структура растительного вещества, запасы и продукция экосистем Тувы изучались различными авторами в период 1982–2008 гг. Данные о запасах надземного и подземного растительного вещества в луговых степях Улуг-Хемской котловины опубликованы Г.Д. Дыминой [1], А.А. Горшковой [2]; о структуре растительного вещества и продукции степей Убсу-Нурской котловины – А.И. Алехно и др. [3], А.А. Титляновой и др. [4], С.С. Курбатской [5], М.В. Якутиным и И.П. Романовой [6], Ч.С. Кыргыс [7], А.Д. Самбуу [8], запасы фитомассы опустынененных степей Центрально-Тувинской котловины – Б.Б. Намзаловым [9], запасы надземной залежной растительности Центрально-Тувинской котловины – А.В. Ооржак [10].

Традиционное землепользование Тувы обусловлено своеобразием природно-климатических условий и развитием отгонно-пастбищного животноводства. Земледелие дореволюционной Тувы было подсобным занятием. Около 70% хозяйств имели небольшие земельные участки – всего они засевали в начале ХХ в. 5,5 тыс. га. Затем в 1931 г. площадь их увеличилась до 9 тыс. га. После вхождения Тувы в состав СССР (1944 г.) началось интенсивное освоение земель. Глубокая трансформация природных экосистем происходит при постройке населенных пунктов, дорожном строительстве, добыче полезных ископаемых, но, прежде всего, связана с развитием сельского хозяйства. Под поля распахивались степи и луга. Площадь пашни в 1945 г. составила 61 тыс. га, 1960 г. – 279 тыс. га, 1970 г. – 349 тыс. га, 1980 г. – 371 тыс. га, в период 1982–2001 гг. площадь под сельскохозяйственными культурами снижается в результате отчуждения в залежь; так, в 2001 г. площадь пашни составила 55 тыс. га, а к 2008 г. вновь увеличилась до 206 тыс. га [11]. При пахоте и посеве длительно вегетирующие, многовидовые фитоценозы замещались агрофитоценозами, состоящими из одной культуры с коротким периодом вегетации. В то же время почва переходила в агроэкосистему со всей ее биотой и потенциалом к разложению органических веществ. Количество растительных остатков, поступающих в почву и поддерживающих гумусовый баланс, резко уменьшилось в связи с более низкой чистой первичной продукцией (NPP) агроценозов по сравнению с целинными степями и лугами и отчуждением части продукции с урожаем. В результате длительного времени ежегодная гумификация растительных остатков была ниже минерализации почвенного органического вещества (ПОВ), что и привело к его потерям. Через определенный период установилось новое стационарное состояние с более низким содержанием ПОВ, биота почвы также изменяется. Таким образом, распахивание целинных земель и превращение их в агроценозы сопровождается изменением всех компонентов экосистемы.

Трансформация экосистем происходит при использовании степей, долинных и высокогорных лугов для выпаса скота. При данном виде хозяйственной деятельности глубина изменений зависит от типа экосистемы, длительности ее использования и интенсивности пастбищного пресса [12, 13]. Степные ландшафты формируются в условиях континентального климата с недостаточным и неустойчивым увлажнением и распространены в основном между 40 и 55° с.ш. Умеренная пастбищная нагрузка является оптимальным для функционирования степных экосистем. Неодинаково влияние выпаса на луговые и лесостепные экосистемы. Наиболее чувствительны к выпасу луга. Проростки деревьев гибнут при скусывании их животными и вытаптывании. Перевыпас во всех экосистемах приводит к изменению видового состава фитоценоза и снижению его продуктивности.

Сенокосная нагрузка не разрушает травяной покров, при рациональном сенокосном использовании сохраняется видовой состав фитоценоза, а иногда и его продуктивность, но длительное сенокошение приводит к выносу питательных элементов из почвы и снижению продуктивности растений.

Правильная эксплуатация лесов с восстановительными мероприятиями не влияет на породный состав леса и его продукцию. Однако в лесной и лесостепной зонах леса интенсивно эксплуатируются человеком: неконтролируемые вырубки, выпас скота, сенокошение на полянах и опушках, в результате меняется породный

состав древостоя, видовой состав подлеска и напочвенный покров.

Общим для всех типов использования земель является отчуждение некоторой доли продукции (с урожаем, сеном, съеденной травой, древесиной) и вынос ее за пределы экосистемы. Цель данной работы — выявить особенности влияния использования земель на изменение чистой первичной продукции в экосистемах Тувы: количественное изменение NPP и входа растительных остатков в почву, вынос части продукции из экосистем.

Исследования проводились в различных экосистемах Тувы. Для определения чистой первичной продукции (NPP) необходимо знать площади и величину продукции

естественных экосистем до воздействия на них человека, а также площади и величину продукции современных экосистем: агроценозов, пастбищ, сенокосов и техноэкосистем. Для расчета использовали геоботанические карты, где показаны границы естественной растительности и обобщенные массивы антропогенных трансформатов [14, 15]. На основе карт были рассчитаны площади различных типов болот, лесов и травяных экосистем Тувы, уточнены площади болот, пойменных лугов, степей, выделены природные зоны и ландшафты (рис. 1). Таким образом, были оценены площади основных типов растительности прошлого растительного покрова для ландшафтных и административных районов Тувы.

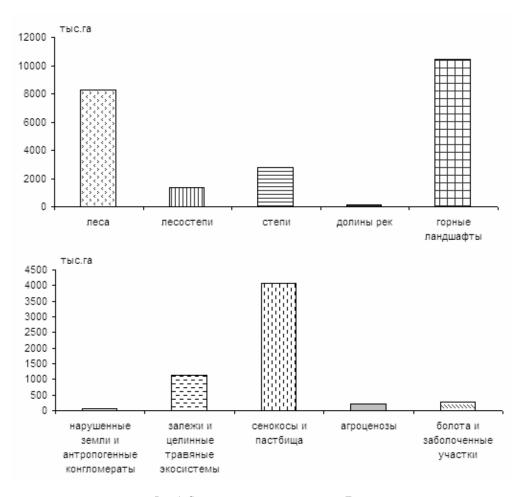


Рис. 1. Структура растительного покрова Тувы

Схемы замещения природных экосистем различными типами трансформатов созданы на базе информации о приуроченности тех или иных видов использования земель к различным типам почв [16–19].

Для оценки продукции лесостепей использовалась обобщенная информация [15], ANP, BNP и NPP степей определена А.А. Титляновой и др. [20]. В целом имелся набор данных для двадцати травяных экосистем, расположенных на территории республики и представляющих заповедные варианты всех основных типов травянистой растительности.

Продукция сенокосов оценивалась по определенному для сенокосной луговой степи Русской равнины соотношению между надземной и подземной фитомассой и надземной и подземной продукцией [21]. Изме-

нение максимального запаса зеленой фитомассы на сенокосах и пастбищах при их длительном использовании приведено в работе [22]. В расчетах учитывались среднестатистические данные об урожае сена [18, 19]. Вынос продукции с сеном по экспериментальным оценкам составляет около 45% надземной продукции и 15% NPP [23]. Хозяйственный урожай сена обычно ниже приведенной оценки.

Изменение NPP на пастбищах оценивалось при умеренной пастбищной нагрузке. В таком случае NPP снижается в 1,5 раза по сравнению с пастбищем со слабой нагрузкой или с заповеданной после пастбища степью [24]. На пастбищах отчужденная продукция частично возвращается в нее с экскрементами животных, в результате чего чистое отчуждение составляет 3,9% NPP [25].

Продукция агроценозов рассчитывалась для каждой культуры отдельно на основе урожаев и площадей, занятых этой культурой в 1975–1980 гг. [26]. Величины NPP оценивались по урожаю с помощью регрессионной кривой [27]. Отчуждение принималось равным урожаю. Для зерновых принято, что солома с половины площадей вывозится на фермы и там используется, с другой половины – сжигается.

На основании имеющихся сведений продукция интенсивно эксплуатируемых лесов принята равной 70% продукции ненарушенных древостоев. Продукция вырубок и гарей меняется при зарастании их хвойными породами в течение 80 лет от 12 до 90% максимальной величины NPP девственных лесов [28]. Для осредненной вырубки (40 лет) продукция составляет около 50% ее максимальной величины. Продукция гарей и просек оценена также в 50% от NPP лесов; песков, пустырей, оврагов - в 20% от NPP целинных экосистем, растительности городов, поселков, деревень, дорог – в 10%. Оценка изъятия древесины из нормально эксплуатируемых лесов основана на данных о величине и доле использования расчетной лесосеки во всех районах республики. При расчетах принято, что при заготовке и обработке на месте остается 40% срубленной древесины. Вынос древесины из интенсивно эксплуатируемых лесов считается равным ежегодному приросту стволовой древесины [29].

Ландшафты Тувы и трансформация растительного покрова под влиянием хозяйственной деятельности человека

Общая площадь Тувы составляет 170,5 тыс. км². Как и в других районах гор Южной Сибири, на территории Тувы растительный покров подчиняется закономерностям высотной поясности с хорошо выраженными высокогорным, горно-лесным и степным поясами. Около половины площади Тувы до начала интенсивной хозяйственной деятельности было занято лесами (49%), а более трети земельной площади покрыто травянистой растительностью и пригодно для выпаса скота. Возможность содержания домашних животных в течение целого года на подножном корме определяла в прошлом кочевое животноводство как основное занятие населения. Как в СССР, так и в современном сельском хозяйстве Тувы, животноводство, основанное на широком использовании естественных пастбищ и сенокосов, остается основной отраслью. Освоение земель человеком мало повлияло на растительный покров в горных ландшафтах и кардинально изменило его в межгорных котловинах в центральной и южной части республики – в зонах лесостепи и степи (см. рис. 1). Снижение площади целинных степных экосистем произошло на 23% (в 4 раза) за период с 1910 по 2008 г., луговых экосистем -17,4% (в 6 раз).

В лесной зоне (8277,9 тыс. га) на месте вырубленных лесов сформировались суходольные луга, используемые как пастбища и сенокосы. Участие их в растительном покрове невелико – около 1% территории зоны. Однако на долю земель, нарушенных (просеки, вырубки, гари) и занятых антропогенными агломератами (разработки полезных ископаемых, промышленные объекты, города, деревни, поселки, дороги и др.), прихо-

дится 8% общей площади зоны. Большая часть территории республики покрыта коренными хвойными и мелколиственными лесами, в которые мелкими пятнами вкраплены агроценозы и пастбища. Основной вид трансформации характеризуется небольшой площадью интенсивно эксплуатируемых насаждений, вырубок и гарей. Агроценозы заместили в основном суходольные луга.

Лесостепная зона (1355 тыс. га) в результате деятельности человека изменена на 40% ее территории. Агроценозы в настоящее время занимают значительные площади луговых степей и остепненных лугов. Сенокосы распространены во всех типах экосистем, основная их часть расположена на остепненных лугах. Пастбищные угодья покрывают 16% площади луговых степей и остепненных лугов, 7,2% — суходольных лугов. Таким образом, основной ландшафт лесостепной зоны — пастбищные угодья, а на втором месте стоят агроценозы и сенокосы. Целинных степей и остепненных лугов осталось мало. Встречающиеся на неудобьях участки этих экосистем являются чаще всего залежами или заброшенными пастбищами и сенокосами.

В степной зоне (2811,0 тыс. га) использование земель значительно выше, чем в лесостепной, — 80%. Агроценозы в настоящее время занимают 14,7% площади зоны, заместив настоящие и засушливые степи. Пастбища расположены на территории, составляющей 78% площади зоны. Скот выпасают в экосистемах всех типов, но главные пастбищные угодья расположены в сухой степи. До сих пор степи традиционно используются под выпас скота. Как известно, слабая пастбищная нагрузка является необходимым элементом нормального функционирования травяных экосистем, однако значительные площади степей в настоящее время находятся под сильным выпасом.

Горные ландшафты мало используются человеком, и лишь 10% их территории испытывают антропогенную нагрузку. Главный тип эксплуатации земель — вырубка лесов и выпас скота на высокогорных пастбищах. Болота и заболоченные участки здесь имеют ограниченное распространение в виде небольших участков по понижениям рельефа.

В целом структура экосистем Тувы определяется малым проникновением человека в тайгу и интенсивным преобразованием степи и лесостепи.

Чистая первичная продукция естественных экосистем и агроценозов

Чистая первичная продукция различных типов лесных экосистем неодинакова. Вторичные осиново-березовые леса создают высокую продукцию за счет листвы и в целом столь же продуктивны, как коренные лиственничные леса [30]. В лесостепи основная площадь была занята луговыми степями. Травяные экосистемы обладают высокой продукцией от 5,3 до 16,4 т/га/год за счет быстрого роста подземных органов. Выпас скота изменяет видовой состав растений и снижает продукцию в зависимости от степени нагрузки. Так, в луговых степях Русской равнины умеренный выпас и сенокошение приводили к снижению NPP на 22% по сравнению с продукцией пастбища, находящегося под слабым выпасом. Сильный выпас понижал NPP на 40%. Пашни в лесостепной зоне размещаются обычно на плодородных темнокаштановых, черноземо-

видных и на черноземных почвах. В лесостепи более половины территории распаханы. Набор культур включает в основном зерновые, картофель и корнеплоды. Зерновые культуры характеризуются низкой величиной как надземной, так и подземной продукции. В целом продукция агроценозов значительно меньше, чем целинных и используемых травяных экосистем лесостепи. Следовательно, в лесостепи произошли коренные изменения: NPP агроценозов, заместивших травяные экосистемы, составляет небольшую долю продукции коренных степных и луговых сообществ.

В настоящей степи пастбищная нагрузка привела к падению NPP. Используемые травяные экосистемы остаются высокопродуктивными и способны создавать в среднем 8 т/га/год растительного вещества. В сухих степях снижение продуктивности проявляется резче.

Величина надземной продукции (ANP) в настоящих степях превосходит ANP сухих степей и лесостепи приблизительно в 2 раза, а BNP более, чем в 2 раза. В то же время отмечается незначительное превосходство подземной продукции (BNP) настоящих и сухих степей, в основном связанное с подъемом величины продукции после ослабления пастбищной нагрузки.

Таким образом, в исследуемых экосистемах разрыв между величинами NPP целинных и заместивших их агроценозов достигает максимума. В сухих степях сильнее проявляется снижение чистой первичной продукции трансформированного растительного покрова.

Чистая первичная продукция прошлого и современного растительного покрова

Лесная зона, где больше всего лиственничных и кедровых лесов, самая обширная в Туве. Участие остальных лесных формаций небольшое. Современный растительный покров в связи нарушением экосистем продуцирует несколько меньше органического вещества, чем прошлый. Падение NPP суходольных лугов вследствие их использования и нарушение лесных экосистем привели к снижению продукции зоны по сравнению с прошлым растительным покровом. Однако общее снижение продукции составляет всего 5%, а среднее снижение NPP не превышает 0,5 т/га/год (табл. 1).

Лесостепь как самобытный ландшафт имеет своеобразную, типичную только для него растительность и представляет собой единство лесных и луговостепных фитоценозов. Наиболее распространенными экосистемами как предшествующего, так и настоящего растительного покрова в лесостепи Тувы являются: для лесного элемента – парковые лиственничные, лиственничные с подлеском и березово-лиственничные леса, лиственничные и осиново-березовые перелески, для степного элемента лесостепи - различные формации луговых степей: разнотравно-злаковые, разнотравные, кустарниковые, каменистые, а также остепненные луга. Вклад лесостепи в общую продукцию предыдущего растительного покрова был наибольшим. Высокая продукция зоны была обусловлена значительными величинами NPP степей (20 т/год). Степи в настоящее время замещены агроценозами, NPP которых ниже, чем у степей. В результате величина NPP лесостепи резко снизилась.

Степь была самым продуктивным ландшафтом – средняя величина ее продукции достигала 15 т/га/год. Причина высокой продуктивности степных целинных экосистем заключается в структуре их автотрофного звена, обеспечивающего интенсивную транслокацию фотосинтетатов в подземные органы многолетних растений. Подземная продукция степных сообществ составляет 13–19 т/га/год. Распашка степей, культивирование в основном однолетних растений вместе с перевыпасом на пастбищах привели к резкому снижению продуктивности зоны. Падение средней величины NPP достигает 8,1 т/га/год, а потери продукции зоны – 32,5% ее прошлого значения.

Горные ландшафты потеряли 14,1% прошлой продукции в основном в связи с использованием лесов и высокогорных пастбищ. Эти потери невелики и не превышают в среднем 1 т/га/год.

Продуктивность речных долин понизилась по сравнению с прошлым растительным покровом, что обусловлено изменением травостоя пойменных лугов при их активной эксплуатации.

Главными причинами снижения продукции в целом по всей республике являются выпас скота, распашка степей и замещение высокопродуктивных, длительно вегетирующих травяных сообществ однолетними, одновидовыми агрофитоценозами.

Таблица 1 Чистая первичная продукция прошлого и современного растительного покрова ландшафтных зон Тувы и снижение продукции за столетие

Ландшафтная зона	NPP, 10 ⁶ т/год		Снижение NPP, %				
	в прошлом	в настоящем	10 ⁶ т/год	от прошлого растительного покрова	от общего снижения	т/га/год	
Лесная зона	245,0	213,0	32,0	13,0	13,0	0,42	
Лесостепь	251,0	124,0	127,0	50,5	51,6	7,4	
Степь	209,0	141,0	68,0	32,5	27,7	8,1	
Горные ландшафты	78,0	71,0	11,0	14,1	4,5	0,7	
Долины рек	80,0	72,2	7,8	9,7	3,2	2,0	
Всего	863.0	621.2	245.8	28.5	100	3.1	

Вынос растительного вещества и поступление растительных остатков в почву

В различных ландшафтных зонах Тувы величина выноса растительного вещества из экосистем, связанная с вырубкой лесов, отчуждением урожая, сжиганием

соломы в поле и поеданием травы пасущимися животными, меняется от 1,3 до $37,9\times10^6$ т сухого вещества в год (табл. 2). Минимален вынос в горных ландшафтах – от 0,12 до 0,82 т сухого вещества в год и в речных долинах, максимален в лесостепи. В лесной зоне 90% выноса связано с вырубкой древесины.

В лесостепи 70% выноса органического вещества определяется отчуждением урожая и сжиганием соломы. В степи соответствующая величина достигает 90%. В горных ландшафтах преобладающим является вынос древесины, а также поедание травы пасущимися животными, в долинах рек — отчуждение трав при сенокошении (90%). Полный вынос растительного вещества по всей территории достигает 106·106 т/год. Основная часть отчуждения приходится на агроценозы.

В естественных ненарушенных человеком экосистемах поступление растительных остатков в почву за год, изменяясь по годам, в целом равно продукции.

Снижение продуктивности растительного покрова за последнее столетие привело к соответствующему уменьшению поступления органических веществ в почву. Дополнительное уменьшение входа органического углерода в почву обусловлено его выносом из экосистем.

Суммарное снижение поступления растительных остатков в почву достигает $318,4x10^6$ т сухого вещества в год (табл. 3). Наибольший урон понесли лесостепная и степная зоны.

Максимальное изменение в поступлении растительных остатков произошло в агроценозах. Вход углерода в сельскохозяйственные почвы снизился более чем в 3 раза по сравнению с этими же почвами под степной и луговой растительностью до их освоения.

За последние 100 лет в Туве были распаханы лесные земли, степи и луга. При этом трансформация естественных экосистем отражается в понижении величин NPP и поступления растительных остатков в почву. С развитием сельского хозяйства с 1945 г. наиболее трансформированы степная и лесостепная экосистемы. Их место заняли поля зерновых, зернобобовых и кормовых культур и паровые поля.

Вынос растительного вещества из экосистем Тувы, 10^6 т сухого вещества в год

Таблица 2

Ландшафтная зона	Агроценозы	Сенокосы	Пастбища	Леса	Всего	Доля от полного выноса, %
Лесная зона	3,32	0,58	0,21	4,26	8,37	11,54
Лесостепь	25,89	4,56	2,14	5,35	37,94	52,29
Степь	20,35	0,20	1,35	0,22	22,12	30,49
Горные ландшафты	0,12	0,23	0,17	0,82	1,34	1,85
Долины рек	0,13	2,34	0,28	0,03	2,78	3,83
Всего, % (числитель – полный вынос,	49,81	<u>7,91</u>	4,15	10,68	72,55	<u>100</u>
знаменатель – доля полного выноса)	68.66	10.90	5.72	14,72	100	_

Таблица 3 Снижение поступления растительных остатков в почвы ландшафтных зон Тувы

Ландшафтная зона	Растительные остатки				
	10 ⁶ т/год	т/га/год			
Лесная зона	17,5	0,75			
Лесостепь	192,2	6,21			
Степь	90,3	7,23			
Горные ландшафты	7,6	0,58			
Долины рек	10,8	1,57			
Beero	318.4	16 34			

На общей площади (371 тыс. га), занимаемой до 1990 г. агроценозами, величины ANP, BNP и NPP уменьшились в 2 и более раза, и, соответственно, здесь максимальные показатели выноса растительного вещества. Понизилось поступление в почву растительных остатков – источника гумуса – в 1,5 раза. Снижение входа органического вещества привело к потерям гумуса.

Чистая первичная продукция современного растительного покрова Тувы достигает 621,2·10⁶ т сухого вещества в год. Оставшиеся целинные и залежные зем-

ли продуцируют немногим более половины ежегодно создаваемой фитомассы. Освоение земель мало повлияло на растительный покров горных ландшафтов, однако изменило его в степных и лесостепных экосистемах межгорных котловин. С 1990 г. с переходом страны в рыночную экономику в республике началось сокращение пахотных площадей и восстановление естественного покрова. Оценки NPP для данного этапа показывают быстрое накопление растительного вещества и медленное нарастание запаса ПОВ.

ЛИТЕРАТУРА

- 1. Дымина Г.Д. Продуктивность степных сообществ Центральной Тувы // Степная растительность Сибири и некоторые черты ее экологии. Новосибирск: Наука, 1982. С. 86–94.
- 2. *Горшкова А.А.* Особенности формирования продуктивности степных сообществ Центральной Тувы // Информационные проблемы изучения биосферы. Убсунурская котловина природная модель биосферы. Пущино, 1990. С. 184–190.
- 3. *Алехно А.И., Бусько Е.Г., Воронов А.Г. и др.* Структура и динамика растительного покрова // Эксперимент Убсу-Нур. М.: Интеллект, 1995. Ч. 1. С. 59–159
- 4. Титлянова А.А., Романова И.П., Миронычева-Токарева Н.П. Структура растительного вещества степей Убсунурской котловины // Глобальный мониторинг и Убсунурская котловина. М.: Интеллект, 1996. С. 15–18.
- 5. *Курбатская С.С.* Динамика экосистем степей и полупустынь Убсунурской котловины // Глобальный мониторинг и Убсунурская котловина. М.: Интеллект, 1996. С. 23–26.
- 6. Якутин М.В., Романова И.П. Запасы углерода в подземной фитомассе, микробобиомассе и гумусе сухих степей Убсунурской котловины // Глобальный мониторинг и Убсунурская котловина. М.: Интеллект, 1996. С. 30–33.
- 7. Кыргыс Ч.С. Продуктивность сухой степи, используемой как зимнее пастбище // Устойчивое развитие малых народов Центральной Азии и степные экосистемы. Кызыл; Москва: Слово, 1997. С. 80–83.

- 8. Самбуу А.Д. Влияние выпаса на продуктивность сухих степей Убсунурской котловины в Туве: Автореф. дис. ... канд. биол. наук. Новосибирск: ИК СО РАН, 2002. 23 с.
- 9. *Намзалов Б.Б.* Особенности фенологического развития и фитомасса полынно-злаковой полидоминантной опустыненной степи в Западной Туве // Растительные сообщества Тувы. Новосибирск: Наука, 1982. С. 121–140.
- 10. Ооржак А.В. Экология залежных фитосистем Центрально-Тувинской котловины Тувы (демутация растительности и микробиологическая деструкция растительного опада): Автореф. дис. ... канд. биол. наук. Улан-Удэ: БГУ, 2008. 25 с.
- 11. Жуланова В.Н. Гумусное состояние почв и продуктивность агроценозов Тувы: Автореф. дис. ... канд. биол. наук. Красноярск: Изд-во КГАГ, 2005. С. 18.
- 12. Горшкова А.А. Материалы к изучению степных сообществ Ворошиловоградской области в связи с их улучшением // Труды Ботанического института АН СССР. Сер. 3. Геоботаника. 1954. Вып. 9.
- 13. Milchunas D.S., Lauemroth W.K. Quantitative effects of grazing on vegetation and soils over a global range of environments // J. Ecol. 1993. Vol. 63. No 4 P. 237–366
- 14. Шретер А.И. Карта растительности Тувинской автономной области // Природные условия Тувинской автономной области // Труды Тувинской комплексной экспедиции. М., 1957. Вып. 3. С. 190–191.
- 15. Куминова А.В., Седельников В.П., Маскаев Ю.М. и др. Растительный покров и естественные кормовые угодья Тувинской АССР. Новосибирск: Наука, 1985. 254 с.
- 16. *Шахунов П.А., Лиханов Б.Н.* Советская Тува. Кызыл, 1955. 158 с.
- 17. Экономика Тувинской АССР. Кызыл, 1973. 220 с.
- 18. Советская Тува в цифрах: Стат. сб. Кызыл, 1984. 60 с.
- 19. Социально-экономическое положение Республики Тыва. Кызыл, 2004. 46 с.
- 20. Титлянова А.А., Миронычева-Токарева Н.П., Романова И.П. и др. Продуктивность степей // Степи Центральной Азии. Новосибирск: Изд-во СО РАН, 2002. С. 112–145.
- 21. Семенюк Н.В., Базилевич Н.И., Тишков А.А. Биологическая продуктивность травяных экосистем. Новосибирск: Наука, 1976. С. 438-449.
- 22. Вагина Т.А., Базилевич Н.И. Структура, функционирование и эволюция системы биогеоценозов Барабы. Новосибирск: Наука, 1976. Т. 2. C. 265–299
- 23. Сенокосы и пастбища Сибири. Новосибирск, 1989. 158 с.
- 24. *Базилевич Н.И., Семенюк Н.В.* Опыт выделения антропогенной составляющей круговорота веществ в лугово-степных экосистемах при различном их использовании // Почвоведение. 1984. № 5. С. 5–18.
- 25. *Базилевич Н.И., Семенюк Н.В.* Опыт количественной оценки природной и антропогенной составляющих функционирования пастбищных экосистем // Известия АН СССР. Сер. геогр. 1983. № 6. С. 46–52.
- 26. Социально-экономическое развитие Республики Тыва // Госкомстат РТ. Кызыл. 2007. 52 с.
- 27. Титлянова А.А., Тихомирова Н.А., Шатохина Н.Г. Продукционный процесс в агроценозах. Новосибирск: Наука, 1982. 148 с.
- 28. Уткин А.И. Углеродный цикл и лесоводство // Лесоведение. 1995. № 5. С. 15–29.
- 29. Лесной фонд СССР. М., 1991. Т. 2. 250 с.
- 30. Базилевич Н.И. Биологическая продуктивность экосистем Северной Евразии. М.: Наука, 1993. 293 с.

Статья представлена научной редакцией «Биология» 5 ноября 2009 г.