Synthesis of Ni-P-TiO2 coatings with advanced mechanical and catalytic properties | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2014. № 385. DOI: 10.17223/15617793/385/35

Synthesis of Ni-P-TiO2 coatings with advanced mechanical and catalytic properties

There was processed the technique of composite Ni-P-TiO2 coatings producing by chemical deposition method via adding of TiO2 sol into the chemical deposition solution of the following composition, g/l: 6H2O - 25; NaH2PO2H2O - 20; CH3COONa3H2O -15, NH2CH2COOH - 20. In addition this solution was stabilized by thiourea in an amount of 1 mg/l. The deposition duration was 2 hours. The phosphorous content in the coatings was 5.8-6.5 wt. %. The obtained coatings were characterized by a uniform distribution of the dispersed phase and higher microhardness, which increased from 5.72 ± 0.09 GPa (for the original Ni-P coating) up to 6.14 ± 0.17 GPa (after incorporation of TiO2 particle). Annealing leads to an increase in the microhardness of coatings. The highest values of microhardness of coatings (10.63 ± 0.43 GPa) were achieved after annealing at the temperature of 400C. Adding of the following surfactants: sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate, hydroxypropyl methyl cellulose into the electroless nickel plating solution reduces internal stresses, which prevents the formation of microcracks in the coatings which are the cause of their rapid corrosion failure. Addition of SDS reduces the Tafel coefficients for composite Ni-P-TiO2 coating both in acidic (0.5 M H2SO4) and in alkaline media (1M KOH). The rate of hydrogen evolution reaction increases ~ 4 times under acidic conditions. Furthermore, the catalytic activity of composite Ni-P-TiO2 coatings nearly doubles in the alkaline medium as compared with Ni-P coatings. Influence of the SDS additive can be explained by increasing of share of the active surface of Ni-P-TiO2 coating achieved by reducing the size of TiO2 particles included, owing to which coating surface become more active. Using of the SDS additive reduces roughness of Ni-P-TiO2 coatings, which may be attributable to the inclusion of smaller particles of TiO2, because the SDS additive prevents their aggregation in electroless nickel plating solution.

Download file
Counter downloads: 160

Keywords

композиционные Ni-P-TiO2 покрытия, химическое осаждение, микротвердость, шероховатость, катодная реакция выделения водорода, влияние ПАВ, composite Ni-P-TiO2 coatings, chemical deposition, microhardness, roughness, cathodic hydrogen evolution reaction, influence of surfactants

Authors

NameOrganizationE-mail
Subakova Ilzira R.State National Research University of Permsubakova.ilzira@gmail.com
Ostapenko Ksenia A.State National Research University of Permkseniaost1406@gmail.com
Medvedeva Natalia A.State National Research University of Permnata-kladova@yandex.ru
Petukhov Igor V.State National Research University of PermPetukhov-309@yandex.ru
Всего: 4

References

Shibli S.M.A., Dilimon V.S. Effect of phosphorous content and TiO2-reinforcement on Ni-P electroless plates for hydrogen evolution reaction // Int. J. of Hydrogen Energy. 2007. V. 32, № 12. P. 1694-1700.
Dholam R., Patel N., Adami M., Miotello A. Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting // Int. J. Hydrogen Energy. 2008. V. 33, № 23. P. 6896-6903.
Abdel Aal A., Hassan Hanaa B., Abdel Rahim M.A. Nanostructured Ni-P-TiO2 composite coatings for electrocatalytic oxidation of small organic molecules // J. Electroanal. Chem. 2008. V. 619-620. P. 17-25.
Chen W, Gao W, He Y. A novel electroless plating of Ni-P-TiO2 nano-composite coatings // Surf. Coat. Tech. 2010. V. 204, № 15. P. 2493-2498.
Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. Гальванотехника: Справочное издание. М. : Металлургия, 1987. 736 с.
Verma A., Agnihotry S.A. Thermal treatment effect on nanostructured TiO2 films deposited using diethanolamine stabilized precursor sol // Electrochim. Acta. 2007. V. 52, № 7. P. 2701-2709.
Петухов И.В., Медведева Н.А., Субакова И.Р. Получение, свойства Ni-P-TiO2 покрытий и их электрохимическая активность в реакции выделения водорода // Гальванотехника. 2012. Т. 20, № 2. С. 53-59.
Elansezhian R., Ramamoorthy B., Kesavan Nair P. Effect of surfactants on the mechanical properties of electroless (Ni-P) coating // Surf. Coat. Tech. 2008. V. 203, № 5. P. 709-712.
Кузнецов В.В., Петухов И.В., Кузнецова Е.В. Морфология и структура электроосажденных пленок Ni-P // Металлы. 1987. № 5. С. 186-188.
Keong K.G., Sha W., Malinov S. Hardness evolution of electroless nickel-phosphorus deposits with thermal processing // Surf. Coat. Tech. 2003. V. 168, № 2. P. 263-274.
Wang L.P., Gao Y., Xu T., Xue Q.J. A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure // Appl. Surf. Sci. 2006. V. 252, № 20. P. 7361-7372.
Paseka I. Hydrogen evolution reaction on Ni-P alloys: The internal stress and activities of electrodes // Electrochim. Acta. 2008. V. 53, № 13. P. 4537-4543.
Cernigoj U., Stangar U.L., Trebse P., Krasovec U.O., Gross S. Photocatalytically active TiO2 thin films produced by surfactant-assisted sol-gel processing // Thin Solid Film. 2006. V. 495, № 1-2. P. 327-332.
Zhang Z., Wang C.C., Zakaria R., Ying J. Y. Role of particle size in nanocrystalline TiO2-based photocatalysts // J. Phys. Chem. B. 1998. V. 102, № 52. P. 10871-10878.
 Synthesis of Ni-P-TiO<sub>2</sub> coatings with advanced mechanical and catalytic properties | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2014. № 385. DOI: 10.17223/15617793/385/35

Synthesis of Ni-P-TiO2 coatings with advanced mechanical and catalytic properties | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2014. № 385. DOI: 10.17223/15617793/385/35

Download full-text version
Counter downloads: 4030