The study of phenol electrooxidation in alkaline solution on glassy carbon electrode
Phenol and its derivatives are wide-spread pollutants of natural, waste- and drinking waters that are hazardous for humans; therefore, their determination is an important and urgent task. Hybrid instrumental methods are used to control the content of phenols in waste waters. Nowadays there are many reports on the variants of phenol determination by VA at different electrodes and use of specific organic substances allowing to accumulate phenol at the electrode surface, in order to increase sensitivity, or they use modified coal carbon paste electrodes. The existing voltamperometric techniques used to determine phenol are complicated by procedures of preparation (modification) of working electrodes and implementation of additional, generally rare reagents in background solution. Depending on the experimental conditions (pH, composition of the background solution, method of preliminary accumulation and other factors), the formation of quinones, catechol and other polyphenol oxidation products may be observed. The mechanism of phenol electrooxidation may vary not only for different background electrolytes, but also for different potential scan rates. Previously, the authors developed a method for voltammetric determination of low concentrations of phenol using glassy carbon electrode which does not require additional preparation for analysis. Analytical signal of phenol (peak current of electrooxidation) over glassy carbon electrode in the background of 0.003 M NaOH solution in differential mode is observed at a potential of 0.5-0.6 V. In this research in order to establish a mechanism of phenol electrooxidation in alkaline solution on glassy carbon electrode a complex approach representing a combination of electrochemistry and photoluminescence methods was used. The formation of an analytical signal occurs during the electrochemical accumulation at E = 0.0 V for 30 s and subsequent dissolution in the anodic potential sweep from 0.1 to 0.8 V. The anodic peak of phenol is also observed without accumulation, due to the adsorption of it on the electrode surface. This fact is confirmed by electron microscopic photographs of the surface of the electrode before and after phenol accumulation thereon. Solutions at different stages were analyzed by spectral photoluminescence technique. Cyclic voltammetry and spectrofluorometry found that the electrochemical reaction of phenol on the glassy carbon electrode in a solution of 0.003 M NaOH is preceded by a chemical reaction of ionization - CE-mechanism (chemical-electrochemical stage). It is proved that phenolate ion adsorbed on the surface of the glassy carbon electrode is oxidized to return a single electron to form an ionic form of hydroquinone. Ionic forms of hydroquinone and phenol in an alkaline solution are proved by spectro-photoluminescent method. Methods of determining phenol are suitable for use in the analysis of the tap water in the concentration range of 0.001-0.1 mg/dm without prior sample preparation in proposed conditions.
Keywords
вольтамперометрия,
фенол,
стеклоуглеродный электрод,
спектрофотолюминесценция,
voltammetry,
phenol,
a glassy carbon electrode,
photoluminescence spectroscopyAuthors
| Alekseenko Kira V. | Tomsk State University | chemist_84@mail.ru |
| Batalova Valentina N. | Tomsk State University | batvn@sibmail.com |
Всего: 2
References
Vorob'eva T.V., Terletskaya A.V., Kushchevskaya N.F. Standardized and unified methods for determining phenols in natural and drinking waters and main trends of their development // J. of water chemistry and technology. 2007. Vol. 29, № 4. P. 203-213.
Подолина Е.А., Грошев Е.Н., Рудаков. О.Б. Экстракционно-инструментальные способы определения фенолов в конденсированных средах // Конденсированные среды и межфазные границы. 2011. Т. 13, № 1. С. 72-79.
Nukatsuka I., Nakamura S., Watanabe K., Ohzeki K. Determination of phenol in tap water and river water samples by solid-phase spectrophotometry // Analytical Sciences. 2000. Vol. 16, № 3. С. 269-273. 313
Vukovic J., Jurisic Grubesic R., Kremec D., Spaic A. One-step solid-phase uv spectrophotometric method for phenol determination in vaccines: development and quality assessment // J. of Analytical Chemistry. 2013. Vol. 68, № 12. P. 1160.
Подолина Е.А., Харитонова Л.А., Рудаков О.Б., Хорохордина Е.А. Экстракционное разделение и вольтамперометрическое определение гидрохинона и метола // Заводская лаборатория. Диагностика материалов. 2007. Т. 73, № 12. С. 9-12.
Яснев И.М., Мустя О.В., Аверяскина Е.О., Ермаков С.С. Определение фенола методом прямой переменно-токовой кулонометрии с расчётом полного количества электричества по кулонометрической константе // Вестник Санкт-Петербургского университета. Сер. 4: Физика. Химия. 2012. № 2. С. 115-119.
Korenman Ya.I., Alymova A.T., Vatutina I.V. Determination of phenol and guaiacol in aqueous solutions using extraction-chromatographic preconcentration // J. of Anal. Chem. 2002. Т. 57, № 1. С. 31-34.
Hakim F. β-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection // J. of Chromatography A. 2005. Vol. 1087. P. 283-288.
Bulatov A.V., Mikhailova E.A., Timofeeva I.I., Moskvin A.L., Moskvin L.N. Determination of the phenol index of water by stepwise injection analysis with offline preconcentration by extraction chromatography // J. Analyt. Chem. 2013. Vol. 68, № 1. P. 15-18.
Peng Y., Xu J., Zhao J., Hu S., Hu B. Electrochemical behavior of phenol at acetylene black-dihexadecyl hydrogen phosphate composite modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide // Russian journal of electrochemistry. 2008. Vol. 44, № 2. P. 206- 212.
Huang W., Zhou D., Liu X., Zheng X. Electrochemical determination of phenol using CTAB-functionalized montmorillonite electrode // Environmental Technology. 2009.Vol. 30, № 7. P. 701-706.
Mülazimoǧlu I.E., Yilmaz E. Removing of urea and ammonia from petrochemical industries with the objective of reuse, in a pilot scale: Surveying of the methods of waste water treatment // Desalination. 2010. Vol. 256, № 1-3. P. 64-69.
Yongde Z., Jinyuan M. The 2.5th order differential voltammetric determination of phenol with a composite carbon paste/polyamide electrode // Analytica Chimica Acta. 1997. Vol. 353, № 1. P. 71-78.
Ozdokura K.V., Pelit L., Ertas H., Timur S., Nil Ertas F. Head Space Voltammetry: A Novel Voltammetric Method For Volatile Organics And A Case Study For Phenol // Talanta. 2012. Vol. 98. P. 34-39.
Hernandez L., Hernandez P., Velasco V. Carbon felt electrode design: Application to phenol electrochemical analysis by direct oxidation //Analytical and Bioanalytical Chemistry. 2003. Т. 377, № 2. P. 262-266.
Hongchao Yi., Kangbing W., Shengshui H., Dafu C. Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants // Talanta. 2001. № 55. Р. 1205-1210.
Gattrel М., Kirk D. A study of electrochemical passivation during aqueous phenol electrolysis // J. Electrochem. Soc. 1993. № 4. P. 903-911.
Fulian Q., Compton R.G. Laser activated voltammetry: application to the determination of phenol in aqueous solution at a glassy carbon electrode // The Analyst. 2000. Vol. 125, № 3. P. 531-534.
Enache T.A., Oliveira-Brett A.M. // J. of Electroanal Chem. 2011.Vol. 655. P. 9-16.
Ускова И. К., Булгакова О.Н. Циклическая вольтамперометрия фенола // Журн. аналит. химии. 2014. Т. 69, № 6. С. 604-609.
Алексеенко К.В., Баталова В.Н. Разработка методики измерений фенола методом вольтамперометрии в сточных и нормативно- очищенных сточных водах // Вестник Томского государственного университета. 2013. № 370. С. 187-189.
Кукурина О.С., Новиков В.Т., Штыкина А.В. Разработка метода глубокого окисления фенолов // Известия Томского политехнического университета. 2007. Т. 311, № 3. С. 121-124.
Светличный В.А., Чайковская О.Н., Базыль О.К., Кухнецова Р.Т., Соколова И.В., Копылова Т.Н., Мешалкин Ю.П. Фотолиз фенола и парахлорфенола при УФ-лазерном возбуждении // Химия высоких энергий. 2001. Т. 35, № 4. С. 258-264.
Scholz F. Electroanalytical methods. Guide to experiments and applications. 2nd ed. Springer. 359 р. ISBN: 978-3-642-02914-1.
Plambeck J.A. Electroanalytical chemistry: basic principles and applications. New York : Chichester. Wiley, 1982. 512 р.
Tchaikovskaya O.N., Sokolova I.V., Kuznetsova R.T., Swetlitchnyi V.A., Kopylova T.N., Mayer G.V. Fluorescence Investigations of Phenol Phototransformation in Aqueous Solutions // J. of Fluorescence. 2000. Vol. 10, № 4. P. 403-408.