On the Use of Computer Algebra Systems and Microsoft Excel by Students in the MSc Program in Engineering
The article presents the investigation of how large (potentially international) groups of first-year students in the MSc program in Engineering perceive and use scenarios of software products: computer algebra systems Matlab, Mathcad, Mathematica, a common spreadsheet Microsoft Excel, and the computer algebra system adapted for mobile devices Wolfram Alpha. The first stage of the research included the use of statistical methods for the collection and processing of empirical data: namely, the survey of first-year graduate students of Bauman Moscow State Technical University on the perception and usage of scenarios of software products Matlab, Mathcad, Mathematica, Microsoft Excel and Wolfram Alpha in solving problems arising in the educational process. The methodological basis of the second stage of the research is quantitative and qualitative methods of statistical analysis: qualitative analysis and comparison of distributions, correspondence analysis, chi-square test, etc. The research ascertained that students consider the interface of all aforementioned software products to be quite understandable; however, computer algebra systems are not perceived as convenient for presenting results in the form of a report or a presentation. For these purposes, the interviewed students found the package Microsoft Excel to be more suitable. The association of the program Matlab, and partly Mathcad, with solving problems in physics and specialty (in engineering practice), and applicability for demanding computing has been revealed. The research established that students clearly distinguish the differences in the tasks, the solution to which is possible with the help of different software product. The ease of use on a tablet or a smartphone is not an important factor when choosing a software package for solving problems. However, respondents believe that Microsoft Excel is better adapted for use on a smartphone or a tablet compared to computer algebra systems. There are no critical differences in the attitude and methods of using software systems between native speakers of Russian and foreign students - non-native speakers of Russian, but significant differences are present in the proportion of students using different computer algebra systems in these two groups. The results of the present research show that any of the computer algebra systems considered in this study (Mathcad, Matlab, Mathematica), as well as the widely spread package Microsoft Excel, can be used in teaching large engineering groups that can include foreign students. It is advisable to choose one of the computer algebra systems and use it simultaneously with Microsoft Excel.
Keywords
системы компьютерной алгебры,
Microsoft Excel,
инженерное обучение,
восприятие программных продуктов,
computer algebra system,
Microsoft Excel,
engineering education,
perception of program packagesAuthors
Mezhennaya Natalia M. | Bauman Moscow State Technical University | natalia.mezhennaya@gmail.com |
Всего: 1
References
Peng Y., Hong E., Mason E. Motivational and cognitive test-taking strategies and their influence on test performance in mathematics // Educational Research and Evaluation. 2014. Vol. 20, № 5. P. 366-385. DOI: https://doi.org/10.1080/13803611.2014.966115.
Barba P.G., Kennedy G.E., Ainley M.D. The role of students' motivation and participation in predicting performance in a MOOC // Journal of Computer Assisted Learning. 2016. Vol. 32, № 3. P. 218-231. DOI: https://doi.org/10.1111/jcal.12130.
Иванюшина В.А., Александров Д.А., Мусабиров И.Л. Структура академической мотивации: ожидания и субъективные ценности освое ния университетского курса // Вопросы образования. 2016. № 4. С. 229-250. DOI: https://doi.org/10.17323/1814-9545-2016-4-229-250.
Buteau C., Jarvis D.H., Lavicza Z. On the integration of computer algebra systems (CAS) by Canadian mathematicians: Results of a national sur vey // Canadian Journal of Science, Mathematics and Technology Education. 2014. Vol. 14, № 1. P. 35-57. DOI: https://doi.org/ 10.1080/14926156.2014.874614.
Mezhennaya N.M., Pugachev O.V. On the results of using interactive education methods in teaching Probability Theory // Problems of Education in the 21st Century. 2018. Vol. 76, № 5. P. 678-692. URL: http://oaji.net/articles/2017/457-1540320285.pdf
Sarvari C. CAS integration into learning environment // ZDM. 2005. Vol. 37, № 5. P. 418-423. DOI: https://doi.org/10.1007/s11858-005-0031-3.
Haspekian M. An "Instrumental approach" to study the integration of a computer tool into mathematics teaching: the Case of spreadsheets // Inter national Journal of Computers for Mathematical Learning. 2005. Vol. 10, № 2. P. 109-141. DOI: https://doi.org/10.1007/s10758-005-0395-z.
Neuwirth E. Visualizing formal and structural relationships with spreadsheets // A.A. diSessa, C. Hoyles, R. Noss, L.D. Edwards (eds). Computers and Exploratory Learning. NATO ASI Series (Series F: Computer and Systems Sciences). Springer, Berlin, Heidelberg, 1995. Vol. 146. P. 155173. DOI: https://doi.org/10.1007/978-3-642-57799-4_9.
Sanford J. Introducing computational thinking through spreadsheets // Khine M. (ed), Computational Thinking in the STEM Disciplines. Springer, Cham, 2018. P. 99-124. DOI: https://doi.org/10.1007/978-3-319-93566-9. Available at: https://link.springer.com/book/10.1007%2F978-3-319-93566-9
Harrison T.R., Lee H.S. iPads in the mathematics classroom: Developing criteria for selecting appropriate learning apps // International Journal of Education in Mathematics, Science and Technology (IJEMST). 2018. Vol. 6, № 2. P. 155-172. DOI: https://doi.org/10.18404/ijemst.408939.
Jacinto H., Carreira S. Mathematical problem solving with technology: the Techno-mathematical fluency of a student-with-GeoGebra // International Journal of Science and Mathematics Education. 2017. Vol. 15, № 6. P. 1115-1136. DOI: https://doi.org/10.1007/s10763-016-9728-8.
Albano G., Dello Iacono U.J. GeoGebra in e-learning environments: a possible integration in mathematics and beyond // Journal of Ambient Intelligence and Humanized Computing. 2018. P. 1-13. DOI: https://doi.org/10.1007/s12652-018-1111-x.
Weisstein E. Computable data, Mathematics, and digital libraries in Mathematica and Wolfram|Alpha // Watt S.M., Davenport J.H., Sexton A.P., Sojka P., Urban J. (eds). Intelligent Computer Mathematics. Lecture Notes in Computer Science. Springer, Cham, 2014. Vol. 8543. P. 26-29. DOI: https://doi.org/10.1007/978-3-319-08434-3_3. URL: https://link.springer.com/book/10.1007/978-3-319-08434-3
Васильева Л.Н. Использование пакета Matlab в курсе изучения дифференциальных уравнений // Педагогическая информатика. 2011. № 4. С. 67-73.
Ivanov O.A., Ivanova V.V., Saltan A.A. Discrete mathematics course supported by CAS MATHEMATICA // International Journal of Mathematical Education in Science and Technology. 2017. Vol. 48, № 6. P. 953-963. DOI: https://doi.org/10.1080/0020739X.2017.1319979.
Dana-Picard T. Motivating constraints of a pedagogy-embedded computer algebra system // International Journal of Science and Mathematics Education. 2007. Vol. 5, № 2. P. 217-235. DOI: https://doi.org/10.1007/s10763-006-9052-9.
Cretchley P., Harman C., Ellerton N., Fogarty G. MATLAB in early undergraduate mathematics: An investigation into the effects of scientific software on learning // Mathematics Education Research Journal. 2000. Vol. 12, № 3. P. 219-233. DOI: https://doi.org/10.1007/BF03217086.
Duran M.J., Gallardo S., Toral S.L., Martinez-Torres R., Barrero F.J. A learning methodology using Matlab/Simulink for undergraduate electrical engineering courses attending to learner satisfaction outcomes // International Journal of Technology and Design Education. 2007. Vol. 17, № 1. P. 55-73. DOI: https://doi.org/10.1007/s10798-006-9007-z.
Barkatsas T., Gialamas V., Orellana C. Secondary students' attitudes toward learning mathematics with computer algebra systems (CAS) // T. Barkatsas, A. Bertram. (eds) Global Learning in the 21st Century. Global Education in the 21st Century Series. SensePublishers, Rotterdam, 2016. P. 121-137. DOI: https://doi.org/10.1007/978-94-6300-761-0_8.
Moran-Soto G., Benson L. Relationship of mathematics self-efficacy and competence with behaviors and attitudes of engineering students with poor mathematics preparation // International Journal of Education in Mathematics, Science and Technology (IJEMST). 2018. Vol. 6, № 3. P. 200-220. DOI: https://doi.org/10.18404/ijemst.428165.
Broley L., Caron F., Saint-Aubin Y. Levels of programming in mathematical research and university mathematics education. International Journal of Research in Undergraduate Mathematics Education. 2018. Vol. 4, № 1. P. 38-55. DOI: https://doi.org/10.1007/s40753-017-0066-1.
Меженная Н.М. Использование систем компьютерной математики как инструмента раскрытия междисциплинарных связей в курсах вероятностных дисциплин // Международный журнал экспериментального образования. 2018. № 9. С. 24-31.
Fisher C.R. A pedagogic demonstration of attenuation of correlation due to measurement error // Spreadsheets in Education (eJSiE). 2014. Vol. 7, № 1. Article four. Retrieved from. http://epublications.bond. edu.au/ejsie/vol7/iss1/4.
Choi L.J. Embracing identities in second language learning: current status and future directions // Problems of Education in the 21st Century. 2018. Vol. 76, № 6. P. 800-815. DOI: https://doi.org/10.33225/pec/18.76.800.
Crystal D. The Cambridge encyclopedia of language. New York, NY : Cambridge University Press, 2010. 524 p.
Шамилев Т.М. Применение символьных вычислений пакета программ Matlab при обучении математике будущих инженеров-педагогов // Ученые записки крымского инженерно-педагогического университета. 2016. № 2 (52). C. 107-112.
Кальяр М.Н., Ахмад Б., Кальяр Х. Влияет ли мотивация учителя на мотивацию учащегося. Опосредующая роль профессионального поведения педагога // Вопросы образования. 2018. № 3. С. 91-119. DOI: https://doi.org/10.17323/1814-9545-2018-3-91-119.
Barkatsas A., Kasimatis K., Gialamas V. Learning secondary mathematics with technology: Exploring the complex interrelationship between students' attitudes, engagement, gender and achievement // Computers & Education. 2009. Vol. 52, № 2. P. 562-570. DOI: https://doi.org/10.1016/).compedu.2008.11.001.
Davidovitch N., Yavich R. The impact of mobile tablet use on students' perception of learning processes // Problems of Education in the 21st Century. 2018. Vol. 76, № 1. P. 29-42. URL: http://oaji.net/articles/2017/457-1519987967.pdf