Media Effects in the Structure of Diffusion Networks: Cognitive Network Control Technologies
The formation of social media, also referred to as new media, entailed the emergence of a number of problems for the authorities, one of which is the limited control over their activities. This study aims to identify and describe network practices of social media functioning in the structure of diffusion networks; establish their cognitive forms and analyze their inherent media effects; assess the prospects for managing a diffusion network and methods of network control over the transfer and accumulation of knowledge. The hypothesis is the assumption that diffusion networks are not only a structural element of network interaction, but can also be considered as an independent actor in network communication on the Internet. Bruno Latour's actor-network theory, which allows considering the network as an independent actor, was chosen as a methodological justification. To conceptualize the concept of diffusion networks, the author used the network approach and theoretical positions of diffusionism to describe the main characteristic of diffusion networks-diffusion, that is, the spontaneous, unhindered distribution of innovations (new information, ideas, patterns) over them. The evidence of the impact on network actors was built on the basis of the indicator of the slowdown in the spread of innovation across networks, which indicates certain obstacles associated either with the influence of the network itself as a communication channel, or with the cognitive effects of innovation reception by network communities, or with administrative intervention in the form of attempts to establish direct control over network actors. As a result of the study of network media effects, it is possible to generalize some of their regularities on the material of foreign experience in the study of diffusion networks since in Russia the topic of policy diffusion is practically not represented in the scientific discourse and is covered insignificantly in the framework of innovative diffusionism. The regularities include the statement about the influence of network communication channels of the Internet as a communicative intermediary on the functioning of network actors; the unification of part of network communities into like-minded groups explained by the principle of homophily; the state of cognitive uncertainty in the perception of innovation characteristic of a significant part of network users. Media effects, due to the appearance of the technical capabilities of the Internet in accordance with the preferences of network users, are echo chambers and filter bubbles. Media effects of cognitive anti-censorship, special forms of network commemoration to preserve historical memory, and the creation of open access media platforms that allow network users to collectively generate new knowledge can be considered as results of cognitive network control technologies. Management, and not manipulation, of Internet communities in the future will be possible only when moving to the next level of public management technologies-governance.
Keywords
диффузионные сети,
социальные медиа,
когнитивный контроль,
политическая цензура,
инновации,
историческая память,
diffusion networks,
social media,
cognitive control,
political censorship,
innovation,
historical memoryAuthors
Podshibyakina Tat'yana A. | Southern Federal University | tan5@bk.ru |
Всего: 1
References
Maggetti M. The rewards of cooperation: The effects of membership in European regulatory networks // European Journal of Political Research. 2014. Vol. 53, № 3. P. 480-499.
SPID: A New Database for Inferring Public Policy Innovativeness and Diffusion Networks / F. Boehmke, M. Brockway, B. Desmarais, J. Harden, S. LaCombe, F. Linder, H. Wallach // Policy Studies Journal. 2020. Vol. 48, № 2. P. 517-545.
Latour B. Reassembling the Social: An Introduction to Actornetwork-Theory. New York : Oxford University Press, 2005. 280 p.
Латур Б. Об акторно-сетевой теории. Некоторые разъяснения, дополненные еще большими усложнениями // Логос. 2017. Т. 27, № 1. С. 173-201.
Couldry N. Actor network theory and media: Do they connect and on what terms? // Connectivity, Networks and Flows: Conceptualizing Contem porary Communications / А. Hepp, F. Krotz, S. Moores, C. Winter (eds.). Cresskill; New York : Hampton Press, Inc., 2008. P. 93-110.
Valente T. Network models of the diffusion of innovations // Computational and Mathematical Organization Theory. 1996. Vol. 2, № 2. P. 163-164.
Plesner U. An actor-network perspective on changing work practices: Communication technologies as actants in newswork // Journalism. 2009. Vol. 10, № 5. P. 604-626.
Bennett W.L., Segerberg A. The logic of connective action: Digital media and the personalization of contentious politics // Information, communi cation and society. 2012. Vol. 15, № 5. P. 739-768.
Desmarais B., Harden J., Boehmke F. Persistent policy pathways: Inferring diffusion networks in the American states // American Political Science Review. 2015. Vol. 109, № 2. P. 392-406.
Goel S., Watts D., Goldstein D. The structure of online diffusion networks // Proceedings of the 13th ACM Conference on Electronic Commerce (Valencia Spain. June 2012) / B. Faltings, K. Leyton-Brown, P. Ipeirotis (eds.). New York : Association for Computing Machinery, 2012. P. 623-638.
Gilardi F., Shipan C., Wueest B. Policy diffusion: The issue-definition stage // American Journal of Political Science. 2020. DOI: 10.1111/ajps.12521
Boushey G. Punctuated equilibrium theory and the diffusion of innovations // Policy Studies Journal. 2012. Vol. 40, № 1. P. 127-146.
Sunstein C.R. Echo chambers. Princeton : Princeton University Press, 2001.108 p.
Паризер Э. За стеной фильтров. Что Интернет скрывает от вас? /пер. с англ. А. Ширикова. М. : Альпина Бизнес Букс, 2012. 304 с.
Quattrociocchi W., Scala A., Sunstein C.R. Echo chambers on Facebook. SSRN Scholarly Paper ID 2795110 // Social Science Research Network. Rochester, New York. 2016. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract id=2795110 (дата обращения: 09.03.2020).
Flaxman S., Goel S., Rao J. Filter bubbles, echo chambers and online news consumption // Public opinion quarterly. 2016. Vol. 80, № S1. P. 298-320.
Madsen J., Bailey R., Pilditch T. Large networks of rational agents form persistent echo chambers // Scientific reports. 2018. Vol. 8, № 1. P. 12391.
Stella M., Ferrara E., Domenico M. Bots increase exposure to negative and inflammatory content in online social systems // Proceedings of the National Academy of Sciences. 2018. Vol. 115, № 49. P. 12435-12440.
Tabrizi S., Shakery A. Perspective-based search: a new paradigm for bursting the information bubble // Facets. 2019. Vol. 4, № 1. P. 350-388.
Rahwan I. Towards Scalable Governance: Sensemaking and Cooperation in the Age of Social Media // Philosophy and Technology. 2017. Vol. 30, № 2. P. 161-178.
Higham D., Mantzaris A. A network model for polarization of political opinion // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020. Vol. 30, № 4. P. 043109.
Zmigrod L., Rentfrow P., Robbins T. The partisan mind: Is extreme political partisanship related to cognitive inflexibility? // Journal of Experimental Psychology: General. 2020. Vol. 149, № 3. P. 407-418.
Kim D., Kee K., Dearing J. Applying the communication theory of Diffusion of Innovations to economic sciences: a response to the «Using gossips to spread information» experiments conducted by the 2019 Nobel Laureates // Journal of Applied Communication Research. 2020. Vol. 48, № 2. P. 157-165.
Lerman K. Information is not a virus, and other consequences of human cognitive limits // Future Internet. 2016. Vol. 8, № 2. P. 21. URL: https://www.mdpi.com/1999-5903/8/2/21 (дата обращения: 09.03.2020).
Redmond M. Uncertainty reduction theory // English Technical Reports and White Papers. 3. 2015. URL: https://lib.dr.iastate.edu/engl_reports/3 (дата обращения: 9.03.2020).
Gudykunst W. An anxiety/uncertainty management (AUM) theory of effective communication. Making the Mesh of the Net Finer // Theorizing about intercultural communication. Thousand Oaks ; London ; New Delhi : Sage Publications, 2005. P. 281-322.
Festinger L. Theory of Cognitive Dissonant. Stanford : Stanford University Press, 1957. 291 p.
Stroud N. Selective Exposure Theories // Oxford handbook of political communication / К. Kenski, K. Jameson (eds.). Oxford : Oxford University Press, 2017. P. 531-549.
Aral S., Muchnik L., Sundararajan A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks // Proceedings of the National Academy of Sciences. 2009. Vol. 106, № 51. P. 21544-21549.
Carley K. A theory of group stability // American Sociological Review.1991.Vol. 56, № 3. P. 331-354.
Potseluev S.P., Konstantinov M.S., Podshibyakina T.A. Stratecies of Cognitive Political Censorship as an effect «New Media» // Dilemas contemporaneous: Educacion, Politica y Valores. 2020. Vol. 7, № 2. P. 91.
Inzlicht M., Bartholow B., Hirsh J. Emotional foundations of cognitive control // Trends in cognitive sciences. 2015. Vol. 19, № 3. P. 126-132.
Index on Censorship. URL: https://journals.sagepub.com/home/ioc (дата обращения: 09.03.2020).
Wu X. Discursive strategies of resistance on Weibo: A case study of the 2015 Tianjin explosions in China // Discourse, context and media. 2018. Vol. 26. P. 64-73.
Cao X. Censorship and Everyday Forms of Resistance in Chinese Cyberspace. A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Media Studies. The University of Auckland, 2015. URL: https://researchspace.auckland.ac.nz/handle/2292/28131 (дата обращения: 09.03.2020).
Nordin A., Richaud L. Subverting official language and discourse in China? Type river crab for harmony // China information. 2014. Vol. 28, № 1. P. 47-67.
Tang L., Yang P. Symbolic power and the internet: The power of a «horse» // Media, Culture and Society. 2011. Vol. 33, № 5. P. 675-691.
Schmidt L., de Kloet J. Bricolage: Role of Media // The International Encyclopedia of Media Effects / P. Rossler, C. Hoffner, L. Zoonen (eds). Hoboken; New York : John Wiley and Sons, Incorporated. 2017. DOI: 10.1002/9781118783764.wbieme0116
Ashuri T. (Web) sites of memory and the rise of moral mnemonic agents // New Media and Society. 2012. Vol. 14, № 3. P. 441-456.
Ashuri T. Joint memory: ICT and the rise of moral mnemonic agents // On Media Memory. Collective memory in a new media age / M. Neiger, O. Meyers, E. Zandberg (eds). London : Palgrave Macmillan, 2011. P. 104-113.
Atkinson S., Whatley S. Digital archives and open archival practices // Convergence. 2015. Vol. 21, № 1. P. 3-7.
Jacobsen B. Sculpting digital voids: The politics of forgetting on Facebook // Convergence. 2020. P. 1354856520907390.
Han E. Journalism and mnemonic practices in Chinese social media: Remembering catastrophic events on Weibo // Memory Studies. 2020. Vol. 14, № 3. P. 162-175.
Wang Y. Contesting the past on the Chinese Internet: Han-centrism and mnemonic practices // Memory Studies. 2019. URL: https://doi.org/10.1177/1750698019875996 (дата обращения: 09.03.2020).
Hwang E., Krackhardt D. Online Knowledge Communities: Breaking or Sustaining Knowledge Silos? // Production and Operations Management. 2020. Vol. 29, № 1. P. 138-155.
Bilic P. «Searching for a centre that holds» in the network society: Social construction of knowledge on, and with, English Wikipedia // New media and society. 2015. Vol. 17, № 8. P. 1258-1276.
Gustafsson K. Chinese collective memory on the Internet: Remembering the Great Famine in online encyclopaedias // Memory Studies. 2019. Vol. 12, № 2. P. 184-197.
Flinn A. Independent Community Archives and Community-Generated Content: Writing, Saving and Sharing our Histories // Convergence. 2010. Vol. 16, № 1. P. 39-51.
Cohen Y. Diffusion Theories: News Diffusion // The International Encyclopedia of Media Effects / P. Rossler, C. Hoffner, L. Zoonen (eds). Ho-boken, New York : John Wiley and Sons, Incorporated. 2017. DOI: 10.1002/9781118783764.wbieme0060.