Strong consistent and asymptotically normal estimate of parameter of first order autoregression process with infinite variance | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2003. № 280.

Strong consistent and asymptotically normal estimate of parameter of first order autoregression process with infinite variance

One considers stationary first orderautoregression process and proposes strong consistent estimate its parameter, that doesnt demand existence of moments of distributionfunction of initial process. It was shown, that for asymptotic normality of this estimate only existence of first moment of initialprocess is nessesary.

Download file
Counter downloads: 296

Keywords

Authors

NameOrganizationE-mail
Kitayeva A.V.Tomsk State Universityolz@mail.tomsknet.ru
Terpugov A.F.Tomsk State Universityterpugov@fpmk.tsu.ru и terpugov@ic.tsu.ru
Всего: 2

References

Samorodnitsky G., Taqqu M.S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. London: Chapmen and Hall, 1997.
Peters E.E. Fractal Market Analysis. Wiley & Sons, 1994.
Bloomfield P., Steiger W. Least Absolute Deviations: Theory, Applications and Algorithms. Boston: Birkhouser, 1983.
Хеннекен П.Л., Тортра А. Теория вероятностей и некоторые ее приложения. М.: Наука, 1974.
Королюк В.С., Портенко Н.И. и др. Справочник по теории вероятностей и математической статистике. М.: Наука, 1985.
 Strong consistent and asymptotically normal estimate of parameter of first order autoregression process with infinite variance | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2003. № 280.

Strong consistent and asymptotically normal estimate of parameter of first order autoregression process with infinite variance | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2003. № 280.

Download file