Continuality of learning types: dynamic catastrophe-based modelling | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2010. № 331.

Continuality of learning types: dynamic catastrophe-based modelling

The paper deals with the development of a theoretical framework for studying and modelling of learning phenomena in humans and non-humans. The approach is based upon the hypothesis of continuality of various observable types of learning curves, i.e. that the learning curves in various species or individuals are in fact manifestations of a single law and comprise a continuum. From mathematical point of view the approach uses the concepts of catastrophe theory and dynamic systems theory. It has been shown that the proposed modelling framework allows one to obtain all the known forms of learning curves with the help of variation of a single parameter λ that denotes the type of learning

Download file
Counter downloads: 294

Keywords

научение, динамическое моделирование, теория катастроф, learning, dynamic modelling, catastrophe theory

Authors

NameOrganizationE-mail
Gavrikov Vladimir L.Krasnoyarsk Pedagogical University, International Research Centre of Extreme States of Organism, Krasnoyarsk Scientific Centre SB RASgavrikov@kspu.ru
Khlebopros Rem G.Krasnoyarsk Pedagogical University, International Research Centre of Extreme States of Organism, Krasnoyarsk Scientific Centre SB RASolikru@yandex.ru
Всего: 2

References

Шуйкин Н.Н., Левшина И.П. О возможности понимания за пределами воображения // Журнал высшей нервной деятельности. 2008. Т. 58, № 5. С. 628-635.
Thorndike E.L. Animal intelligence. N.Y.: Macmillan, 1911. 297 p.
Yerkes R.M. The Mental Life of Monkeys and Apes: A Study of Ideational Behavior // Behavior Monographs. 1916. № 3 (1). 145 p.
Van der Maas H.L.J., Molenaar P.C.M. Catastrophe analysis of discontinuous development Categorical Variables in Developmental Research // Methods of Analysis. San Diego: Academic Press, 1996. Р. 77-105.
Hartelman P.A.I., Van der Maas H.L.J., Molenaar P.C.M. Detecting and modelling of developmental transitions // British Journal of Developmental Psychology. 1998. № 16. Р. 97-122.
Van der Maas H.L.J., Hopkins B. Developmental transitions: So what's new? // British Journal of Developmental Psychology. 1998. № 16. Р. 1-13.
Van der Maas H.L.; Molenaar P.C. Stagewise cognitive development: An application of catastrophe theory // Psychological Review. 1992. Vo l 99(3). Р. 395-417.
Zeeman E.C. Catastrophe theory: selected papers. 1972-1977. Addison-Wesley: Reading Mass, 1977. 675 p.
Zeeman E.C. Catastrophe Theory: A reply to Thom. Lecture Notes in Mathematics 468. Berlin; New York: Springer-Verlag, 1975. Р. 373-383.
Thom R. Catastrophe theory: its present state and future perspectives // Dynamical Systems-Warwick 1974. Lecture Notes in Mathematics № 468. Berlin; New York: Springer-Verlag, 1975. Р. 366-372.
Арнольд В.И. Теория катастроф. М.: Наука, 1990. 128 с.
Gavrikov V.L., Khlebopros R.G. Defining types of learning individuals: a phase portrait approach. Journal of Siberian Federal University // Humanities & Social Sciences. 2009. № 2. Р. 216-222.
Гавриков В.Л., Хлебопрос Р.Г. Две динамические модели научения типа «кошка Торндайка» // Вестник Красноярского государственного педагогического университета им. В.П. Астафьева. 2009. № 2 (в печати).
Van Geert P. A dynamic systems model of basic developmental mechanisms: Piaget, Vygotsky, and beyond // Psychological Review. Oct. 1998. Vol. 105(4). Р. 634-677.
Van der Maas H.L.J., Dolan C.V. , Grasman R.P.P.P. , Wicherts J.M., Huizenga H.M., Raijmakers M.E.J. A Dynamical Model of General Intelligence: The Positive Manifold of Intelligence by Mutualism // Psychological Review. 2006. Vol. 113, № 4. Р. 842-861.
<http://link.aps.org/doi/10.1103/PhysRevSTPER.4.010109>
Pritchard D.E., Lee Y.-J., Bao L. Mathematical learning models that depend on prior knowledge and instructional strategies // Physical review special topics - physics education research 4, 010109, 2008.
Bidell T.R., Fischer K.W. The role of cognitive structure in the development of behavioral control: a dynamic skills approach // Control of human behavior, mental processes, and consciousness: Essays in honor of the 60th birthday of August Flammer. Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 2000. Р. 183-201.
Shoener G., Thelen E. Using dynamic field theory to rethink infant habituation // Psychological Review. 2006. № 113 (2). Р. 273-299.
Spencer J.P., Schoener G. . Bridging the representational gap in the dynamic system approach to development // Developmental Science. 2003. № 6. Р. 392-412.
Newell K.M., Molenaar P.C.M. Application of nonlinear dynamics to developmental process modeling. Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 1998. 321 p.
Thelen E. Motor development as foundations and future of developmental psychology // International Journal of Behavioral Development. 2000. № 24. Р. 385-397.
Thelen E., Ulrich B.D. Hidden skills: A dynamic systems analysis of treadmill stepping during the first year // Monographs of the Society for Research in Child Development. 1991. № 56. Р. 1-104.
Thelen E., Smith L.B. A Dynamic Systems Approach to the Development of Cognition and Action. Cambridge: MIT Press, 1994. 376 p.
Warren W . H . The dynamics of perception and action // Psychological Review. 2006. № 113(2). Р. 358-389.
Thelen E., Shoener G., Scheiner C., Smith L.B. The dynamics embodiment: A dynamic field theory of infant perseverative reaching errors. Behavioral and Brain Sciences. 2001. № 24. Р. 1-86.
Smith L.B., Thelen E., Titzer R., McLin D. Knowing in the context of acting: the task dynamics of the A-not-B error // Psychological Review. 1999. № 106. Р. 235-260.
Исаев А.С., Хлебопрос Р.Г., Недорезов Л.В., Кондаков Ю.П., Киселев В.В. Динамика численности лесных насекомых. Новосибирск: Наука, 1984. 223 с.
Исаев А.С., Хлебопрос Р.Г. Принцип стабильности в динамике численности лесных насекомых // Докл. АН СССР. 1973. Т. 208, № 1. С. 225-228.
Strogatz S. Nonlinear Dynamics and Chaos: With applications to Physics, Biology, Chemistry and Engineering. N.Y.: Perseus Books, 1994. 498 p.
Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., 1993. 301 с.
Falmagne J.-C. Mathematical psychology - A perspective // Journal of Mathematical Psychology. 2005. № 49 (6). Р. 436-439.
Townsend J.T. Mathematical psychology: Prospects for the 21st century: A guest editorial // Journal of Mathematical Psychology. 2008. Vol. 52, is. 5. Р. 269-280.
Merriam-Webster Online Dictionary. 2009. Режим доступа: <http://www.merriam-webster.com/dictionary/learning>
Bush R.R., Estes W.K. Studies in mathematical learning theory. Stanford: Stanford University Press, 1959. 438 p.
Холодная М.А. Психология интеллекта. Парадоксы исследования. 2-е изд., перераб. и доп. СПб.: Питер, 2002. 272 с.
Encyclopеdia Britannica Online. 2009. Режим доступа: <http://www.britannica.com/EBchecked/topic/333978/learning>
Резникова Ж.И. Интеллект и язык животных и человека. Основы когнитивной этологии: Учеб. пособие. М.: Академкнига, 2005. 518 с.
 Continuality of learning types: dynamic catastrophe-based modelling | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2010. № 331.

Continuality of learning types: dynamic catastrophe-based modelling | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2010. № 331.

Download file